Lecture 19, 24 Oct 2006 CH6 Genetics, CH7 Populations

> Conservation Biology ECOL 406R/506R University of Arizona Fall 2006

> > Kevin Bonine Kathy Gerst

Conservation

PVA etc.

Lab this week: 7am 27-29 7pm October = ORPI, Pinacate, CEDO (\$, food, see website for lab readings) Housekeeping, 24 October 2006

Upcoming Readings today: Text Ch.6 and 7, PVA, Puma concolor

Thurs 26 Oct: Guy McPherson (web for climate change reading) Tues 31 Oct: Ed Moll (long web reading) Thurs 02 Nov: Exam Two Tues 07 Nov: Don Falk (web reading) Thurs 09 Nov: Conservation Practices (Ch 10, Donlan EA 2005)

> Short oral presentations : 24 Oct Cori and Robert 09 Nov Jon and Laura 14 Nov Dan and Lane 28 Nov Amanda and Fred

Global Climate Change Lecture Series All lectures will take place at UA Centennial Hall.

All lectures begin at 7pm and are free to the public. Call 520.621.4090 for more information.

Tuesday, October 17 Global Climate Change: The Evidence http://

http://cos.arizona.edu/climate/

- Global Climate Change: What's Ahead Jonathan Overpeck, Director of the Institute for the Study of Planet Earth and Professor of Geosciences
- Tuesday, October 31 Global Climate Change: The Role of Living Things Travis Huxman, Assistant Professor of Ecology and Evolutionary Biology
- Tuesday, November 7 Global Climate Change: Ocean Impacts and Feedbacks Julia Cole, Associate Professor of Geosciences
- Tuesday, November 14 Global Clinate Change: Disease and Society Andrew Comrie, Dean of the Graduate College and Professor of Geography and Regional Development
- Global Climate Change: Could Geoengineering Reverse I Roger Angel, Regents' Professor of Astronomy
- Tuesday, November 28 Global Climate Change: Designing Policy Responses Paul Portney, Dean of the Eller College of Management and Professor of Economics

Applications of Genetics to Conservation Biology

-Molecular Taxonomy

-Populations, Gene Flow, Phylogeography -Relatedness, Paternity, Individual ID

Dr. Melanie Culver

Cori and Robert will speak for 10 minutes on xx

2

Molecular Taxonomy: Molecules versus Morphology

- Cryptic species (sibling species)
- Morphological variation without genetic variation

Relatedness (Kinship, Paternity and Individual ID)

Application of molecular genetic techniques, using hypervariable, repetitive DNA

(ie. microsatellites, minisatellites) to questions of kinship, paternity or individual ID

Populations, Gene Flow, Phylogeography

-Compare genetic traits among populations -Resolve substructure among populations -Infer movement patterns among individuals -Infer historical events for species

Non-Invasive Sampling

- Allows sampling without disturbance to individual
- Rare or hard to capture species
- Examples (hair, scat, feathers, saliva/cheek swab, regurgitated pellets, dried blood, biopsy dart, museum tissues)

Subspecies Taxonomy, Phylogeography, Gene Flow: Puma (cougar, mountain lion)

32 Puma subspecies, as of the early 1900s

Objectives

- Does current population differentiation reflect - Trinomial descriptions?
 - Trinomial descriptions?
 Physical or ecological barriers?
 - I hysical of coological of
 Isolation by distance?
- Are current levels of genetic variation the same within each population?
- Does population structure and genetic variation reflect
 - Historic migrations?
 - Historic dispersals?
 - Historic bottlenecks?

Modern and museum puma samples collected, total of 315

Molecular Methods Used

- Mitochondrial gene sequencing
 - 16SrRNA
 - NADH-5
 - ATPase8
- Nuclear microsatellite length determination - 10 domestic cat microsatellite loci

14

Neutral Markers often studied.

Relevance to natural selection and adaptation?

Ultimately, source of all variation is mutation. mutation rate = $10^{-4} - 10^{-6}$

Mitochondrial DNA Haplotypes (in a geographical cline)

ning Network nes - combined of Differences Nes Protections Term Mathematical States Term M

15

-Ancestral haplotypes

-2 historical radiations

-NA is most recently founded population

Microsatellite Alleles at FCA008

Group	Subspecies	Tet no		in size																			
NA	misaculensis oregonansis vancourensis	21	134		- 130	140	142	-144 1	140	150	- 152	-194	BRET.	150	100	182	104	105	14	170	172	124	_128
	californica kalkatensis hippolestes	RaB.											2.2										
	browni azloca stanioyana corpi	282.											2285										
	maylenits		•																				
CA	costarioensis		•																				
EBA	bobensis gradni acrocodia	1	1										1	1									
NBA	teangail concolor soderstromi incerum orgoosti	-											-										
CIN.	catvorae hudeoni		2											1				1					•
55A	puma araucanus patagonica petagonica		,																			-	

atellites and 262 individu 10 Mierr tion of Shared Alleles di

- -Geographic clustering of individuals
- ~Six groups identified
- 2 distance methods agree

Derrick W. Sugg, University of Georgia, Savannah River Ecology Laboratory							
 adation indices, or 7-5 statistics, several development by Savauil Wayne (1952, 1965, 1969, 1969, 1969, 19799, 1979, 1979, 1979, 1979, 1979, 1979, 19799, 1979, 1979, 1	<text><equation-block><text><text><text></text></text></text></equation-block></text>	<text><text><text><text><text></text></text></text></text></text>					

	NA	CA	ESA	NSA	CSA	SSP
A	1	0.1	0.1	0.02	0.03	0.1
A	*0.784		8.3	0.5	1.6	1.6
SA	*0.815	0.057		0.8	2.3	2.2
ISA	*0.958	*0.492	0.384		4.2	0.5
SA	*0.935	0.233	*0.177	*0.107		1.3
SA	*0.835	0.240	*0.186	*0.526	*0.281	
st n	ear 0 = li osatellit	ttle diver	gence)	(Migr	ants/gene	eratio
st n icr	ear 0 = li	ttle diver	gence)	(Migr	ants/gene	eratio
st n ucr	ear () = li osatellit NA	ttle diver	gence)	(Migr <u>NSA</u> 8.0	ants/gene	eratio
st n ucr A	ear 0 = li osatellit NA *0.110	ttle diver	gence) ESA 4.4 2.3	(Migr <u>NSA</u> 8.0 3.5	ants/gene <u>CSA</u> 2.2 3.5	eratio ssr 0.9
st n uicr A A SA	ear 0 = li osatellit NA *0.110 *0.103	ttle diver	gence) ESA 4.4 2.3	(Migr <u>NSA</u> 8.0 3.5 15.7	ants/gene <u>CSA</u> 2.2 3.5 4.8	ssr 0.9 1.2 1.0
st n ucr A A SA	ear 0 = li osatellit NA *0.110 *0.103 *0.059	ttle diver CA 4.0 •0.179 *0.126	gence) ESA 4.4 2.3 	(Migr 8.0 3.5 15.7	ants/gene 2.2 3.5 4.8 6.0	ssr 0.9 1.2 1.0 1.1
st n licr A SA SA	ear 0 = li NA - *0.110 *0.103 *0.059 *0.186	ttle diver ca 4.0 - *0.179 *0.126 *0.126	gence) ESA 4.4 2.3 - *0.031 *0.094	(Migr 8.0 3.5 15.7 -	CSA 2.2 3.5 4.8 6.0	ssr 0.9 1.2 1.0 1.1 2.4

Summary: -6 groups identified using microsatellites -mtDNA haplotypes overlayed onto map, supports 6 groups -Location of 2 ancestral haplotypes

Major restrictions to gene flow: -Amazon River -Rio Parana -Rio Negro -Andes?

Fossil Record versus Molecular **Divergence Estimates**

- Oldest fossils in North and South America date to 0.2-0.3 Mya
- From mtDNA mutation rate of 1.15%/My, divergence for extant puma lineages is 390,000 years ago
- From mutation rate of 5 x 10^{-9} /yr for microsatellite flanking regions, pumas are less than 230,000 years old

4

Historical Inferences

- Extant pumas originated in Brazillian Highlands (ancestral haplotypes)
- Fossil record suggests dispersal to NA soon after the common origin in Brazil
- 2 historical radiation events occurred

-Ancestor to puma crosses land-bridge ~2-3 Mya

-Puma origin in Brazilian Highlands ~300,000 ya

28

30

S Historical Puma Radiations

25

- 2 Major historical radiations
- -One locally distributed
- -One broad ranging

Puma Conclusions

- Pumas originated in Brazil approximately 300,000 years ago
- Possible extirpation and recolonization in North America (Pleistocene age?)
- Molecular data does not support 32 subdivisions, instead 6 groups
- Pumas are fairly panmictic within 6 groups

Conservation Implications

-Maintain habitat connectivity within 6 large groups

- -Management should consider effects of bottlenecked populations
- -Eastern cougar, Florida panther and Yuma puma management take into account revised subspecies

Subspecies-level

Puma Bottlenecks

- North America low overall genetic variation
- Population-level
 - Florida monomorphic at 8/10 microsatellite loci
 - Olympic Peninsula and Vancouver Island, monomorphic at 5/10 microsatellite loci

populations are dynamic, not static

Cause of cyclic change in population not completely understood. Cycle length average 3.8 years Mass migration in response to high density with decreasing food supply, sometimes swimming involved.

35

populations are dynamic, not static

34

Population sizes change over time

Why?

What causes change in population size? What regulates population size?

If we can answer these questions, we might be able to make changes that increase populations of declining (endangered) species Many things affect population size

1. Exponential growth

density-independent, deterministic

exponential growth: an unrealistic model?

2. Logistic growth

density-dependent, deterministic

Alternatively,

The population growth rate may increase with population size (positive density-dependence)

Allee effect

How?

In animals: -group defense against predators -group attack of prey -mates difficult to find -critical number to stimulate breeding behavior

In plants:

-pollinator limitation -self-incompatibility -inbreeding depression

Allee effect

group defense against predators

How?

Figure 7.6 The sage grave (Centrocencus usphasianus), a gallmasean bird o fee watem: United States, gathers for mating an communal display and breeding grounds known as lets. It worken are smallhater to poince te lik formation, display and treeding may not take relevant

0 11:50 30+ Number of pagens in fick. Success rate of goshawk attacking pigeons in flock. FIGURE 13.17 Success rate of goshawk rarely resulted in capture of a pigeoi from a large flock, atthough most attacks on a single opgoard were successful.

pigeons were successful. -2

The two categories of models we have considered thus far assume that

- all individuals in a population have the same birth and death rates (no genetic, developmental, or physiological differences among individuals)

under some circumstances, this might cause us to inaccurately predict population size

43

3. Structured population models

density-independent, deterministic

This is the type of model most often used in population viability analysis

What is meant by "structure"? A population is **unstructured** if all individuals have the same rates of survival and fertility.

A population is structured if differences among individuals in age, developmental stage, or size cause them to have different survival or fertility rates.

44

Table 7.1 A Life Table for Bedding's Ground Squirrel (Spermophilus bedding). Life tables, prope contracted from appropriate data, provide important summaries of apoptenicité demographic characteristics of plant and a populations: in the same and massles of institutional approximations in the network of the same and the same and

		EMALES		MALES						
AGE (YEARS)	*	4.	4	4.	•**	**	4	4	۰.	••
0-1	337	207	1.000	0.61	1.33	349	227	1.000	0.65	1.07
1-2	252*	125	0.385	0.50	1.56	2484	340	8.350	0.56	1.12
2-3	127	60	0.197	0,47	1.60	106	74	0.152	0.69	0.93
3-4	67	32	0,106	0.48	1.59	34	23	0.048	84.0	0,89
4-5	35	- 16	0.054	0,46	1.59	11	9	0.015	0.02	0.68
3-6	19	30	0.029	0.53	1.50	2	0	0.003	1.00	0.50
6+7	92	4	0.014	0.44	1.61	0	-	-	-	-
7-8	5	1	0.008	0.20	1.50		-	-	-	-
8-9	4	3	0.006	0.75	0.75	12	22	22	22	12
9-10	1	1	0.002	1.00	0.50					

TABLE 6.3 Survival data for red-cockaded woodpeckers in different reproductive stages, from Walters (1990) Eate at the end of a

	Total number	one-year	r interval	Proportion		
Stage	of bird-years	Dead	Alive	surviving one yea		
Fledglings	616	345	271	0.44		
Solitary males	131	50	81	0.62		
Helpers-at-the-nest	273	60	213	0.78		
Breeding males	838	201	637	0.76		
Floaters	29	11	18	0.62		

Life Tables

45

47

3. Density-independent, deterministic, structured population growth

What else can structured population models tell us?

Sensitivity

The sensitivity of λ to each matrix element describes how much $\boldsymbol{\lambda}$ will be affected by a change in that transition probability

Would it be better to focus conservation efforts on improving the survival of hatchlings or large juveniles or adults???

(Lambda = population growth rate)

When *lambda* is greater than 1 the population increases in size

When lambda is less than 1 the population decreases in size

3. Density-independent, deterministic, structured population growth

What else can structured population models tell us?

Elasticity

Elasticities quantify the proportional change (e.g., 1%) in the asymptotic growth rate that can be expected given a particular change (1%) in each life history transition.

Van Dyke p. 178

- "Four Horsemen of the Extinction Apocalypse:"
- 1. Genetic Stochasticity
- 2. Environmental Stochasticity
- 3. Demographic Stochasticity
- 4. Natural Catastrophes

Population Viability Analysis

Groom, Meffe, & Carroll 2006

51

49

Evolution of Population Viability Assessments for the Florida Panther: A Multiperspective Approach David S. Maehr, Robert C. Lacy, E. Darrell Land, Oron L. Bass Jr., and Thomas S. Hoctor

> IN: Population Viability Analysis. Steven R. Beissinger and Dale R. McCullough, eds. Univ. of Chicago Press, Chicago. xvi + 577 pps.

50

52

54

-Panther Article on PVAs over time

-VORTEX

-data -population size? -source and sink? -inbreeding problems? -captive breeding? -introgression? -time scale? -HABITAT LOSS

Table 14.1 Comparison of VORTEX Model Inputs Provided Independently by the Five Authors and the Outputs Generated from These Simulations

		Originator o	of Variable Es ORTEX Simu	timates for t lation	he
Model Inputs and Output	Population Ecologist (Lacy)	State Field Biologist (Land)	Federal Field Biologist (Bass)	University Landscape Ecologist (Hoctor)	University Conservation Biologist (Maehr)
Inputs					
Inbreeding depression?	Yes	No	No	No	No
Lethal equivalents	3.14			100	140
% due to recessive lethals	50				
Reproduction correlated					
with survival?	Yes	No	No	No	
Polygynous mating sys-			140	140	140
bem?	Yes	Yes	Ver	¥	¥
Age 1st female reproduc-			103	res	TCS
tion	2	1			
Are 1st male reproduc-	~		3	2	2
tion	4				
Maximum individual area	10	10	20	3.	3
Reproduction density de-	1.0	1.0	12	9	12
nendent?	No	No			
Sex ratio at birth	50.50	50.50	100	No	No
Maximum litter size	4	00100	30:30	30:30	50:50
% formalies with listersformer	1	4	2	3	4
SD of above	00	30	50	60	-50
% litter of size 1	20	0	10	10	5
5 litter of size 2	40.0	17.5	50	20.0	10.0
6 litter of size 3	40.0	30.0	50	50.0	50.0
% litter of size 4	20.0	30.0		30.0	30.0
Female mostality in anor	1.0	2.5		0	10.0
1	AL 11				
SD in female most-line	20.3	20	0	20	20
sear 1	0.000				
emale mortality in succ	0.013	2.0	4	10.0	5.0
2	10.1				
-	118.1		0	10	20

	Originator of Variable Estimates for the VORTEX Simulation								
Model Inputs and Output	Population Ecologist (Lacy)	State Field Biologist (Land)	Field Field (Burn)	University Landscape Ecologist (Hoctor)	University Conservation Biologist (Marke)				
Male mortality in adults SD in male mortality	21.7	20	- 66	20	20				
adaba	5.425	3.0		5.0	10				
Number of catastrophe									
types Periodelity for extentes	0			2	1				
abe 1				0.05	0.07				
Probability for catatro-									
phe 2				0.01					
Reproduction rate for									
catastrophe 1*				0.50	.55				
reproduction rate for									
catastrophe 2'				0.50					
Survey for catalogue 1-				0.50	0.95				
% of adult males									
haveding	100	50	200	50	40				
Starting population size	50	50	6	60	29				
Habital carrying capacity	50	00		20	55				
SD of above				10	3				
# of years of habitat	Lost			Lost	0				
% habitat change per	25	•	0	20	0				
year Will combern be my	-1.0	0	0	-1.5	0				
moved?	No	No	No	Yes	No				
vaP				1					
For how many years?				20					
# males removed/year # females removed/				1					
year				1					
Population augmentation?	Yes	Yes	Yes	No	No				
If yes, at what interval?	20 years	20 years	10 years						
For how many years? # males added per	200	190	100						
event a black over	0	0	1						
event	6	1	1						
		0.007		0.007	0.075				
	6.38	4.55	3.99	3.55	4.65				
Probability of persistence									
500 iterations	0.005	1.00	0.0695	100	1.00				
More find combine	34.19	20.41	5.52	50.04	33.79				
Median time to estinction			7.13 years						

 Image
 <th

56

Table 14.2 Comp

Table 14.4 Effects of Increasing Carrying Capacity on Genetic Heterozygosity after 100 Years, Using the Consensus VORTEX Simulation					
Carrying Capacity	Predicted Heterozygosity (%) ^a				
70	72.9				
100	80.6				
150	84.1				
200	86.5				
250	87.5				
300	67.5				

90.7

92.4

400

500

⁴ As percentage of initial value of H.

57

55

Last thoughts on PVA

PVA requires lots of data, which takes time, work, and money, whereas managers want answers (predictions about extinction) now. Few species will get thorough PVA. When should PVA be used and what type of PVA (how complex)?

Predictions from PVA can only be as good as the data that go into the analysis. We can only have degrees of confidence in the predictions from PVA. Populations should not be managed to their "minimum viable population" size.

One of the greatest strengths of PVA is the ability to play "what if" games with the model. That is, what if management were to increase patch sizes or connectivity? What if adult survival were improved?

END