Lecture 01, 21 Aug 2007 Introduction and photos

Conservation Biology ECOL 406R/506R University of Arizona Fall 2007

Kevin Bonine Cathy Hulshof

- 1. Introductions
- 2. 3x5 cards, photos
- Syllabus
 Topics

Why are you taking this course? What do you hope to get out of this course?

- 1. Overall course objectives
- Grasp scientific material (content & literacy)
- Provide real-world relevancy and applications
- Place in <u>context</u> of students' lives
- Foster life-long <u>appreciation</u> and respect for: - field, findings, organisms, biodiversity,etc.

- 1. Please take out a piece of paper.
- 2. Write a definition of Conservation Biology.
- 3. Do you think Conservation Biology has a mission or goal?
- 4. What is that mission/goal?
- 5. Has Conservation Biology been successful at achieving that goal?

Keyn E. Isome, Carly Halard, Conservation Biology (ECCL 406R/506R) aka 0EOS 406R/506R, RNR 406R/506R Syllabus 5all 2007 (21 August 2007, solidant 2007, and ange)

William A. Calder III. 1934–2002 (IEEB professor, taught this course until 2002) Bill Calder, Rocky Mountain Biological Station, Gothic, GC Photograph taken in July 1999 by Lorene Calder.

Welcome to Conservation Bloops, a three-and course despited to present processing the servers the Secretarian of bloops development of the secretarian of the terminal of the secretarian of the secretarian of the secretarian of the terminal of the secretarian of the secretarian of the secretarian of the course of the secretarian of the secretarian of the secretarian of the course of the secretarian of the secretarian of the secretarian of the course of the secretarian of the secretarian of the secretarian of the course of the secretarian of the secretarian of the secretarian of the method and proceeding of the secretarian of the secretarian of the course of the secretarian of the secretarian of the secretarian of the method of the secretarian of the secretarian of the secretarian of the method in the secretarian of the secretarian of the secretarian of the secretarian method in the secretarian of the secretarian of the secretarian of the secretarian method in the secretarian of the method in the secretarian of the secretarian of

loogia olences bar (bob) 10 (n me deemen) Mice Houris (BSE 10, 11 noon Tues and noon-Inn Thurs, or by appointment, Mice phone: 626-0092, Home phone: 751-1349 (pieses call before 9pm or after 7ar mail:

Cathy Hulshot, hulshot@email.arizona.edu Office hours: Mon and Wed 2-3, location TBA, and by appointment.

LECTURE: Tuesday and Thursday M400-1530h in MINES 225. LAB (only for 406U,006U); Priday 1220-1530 (nonemark) in KOPFL 410, but we rarely meet there) We will usually be meeting on the S or W Side of 855 to take a ven into the field. See lab schedule for lengthened labs and multi-day labs.

Course Materials Van Dyke, Fred 2003. Conservation Biology: Poundations, Concepts, Applications. McGraw-Hill, New York, 413+xxII pages. (Available at UA Bookstore - http://www.uofabookstores.com/uaz/)

William A. Calder III, 1934–2002

(EEB professor, taught this course until 2002)

Bill Calder, Rocky Mountain Biological Station, Gothic, CO.

Photograph taken in July 1999 by Lorene Calder.

6

Ecological Footprint

Def: Number of productive acres (fishing grounds, forests, agricultural fields) needed to maintain a given lifestyle

-Driving (roads, vehicles, fuel, etc.) -Housing (land and resources for construction) -Food (land, transport, inputs, trophic level) -Other goods and services

US citizens use 24 acres/person on average (Canadians 17, Italians 9, Pakistanis 2)

As of ~2002, planet has about 4.5 acres/person

Sustainability?

(1 acre = 0.405 hectare)

Contribution to Greenhouse Gas Emissions and Global Warming

Johod States	-	25.5 %	United States	-	
Chine	112%		Canada		4.9
Auso.	67%		Australia	-	4.9
lapan	5.1%		Netherlands	-	41
ndia	41%		Belgium	-	3.7
Sermany	39%		Germany	-	8
United Kingido	m 🥅 2.6 %		Czech Republic	-	
Canada	25%		Russia 🗧	2	7
taly	20%		United Kingdom	2.0	
France	1.6%	(France	1.8	

20

22

31

Ecological Footprint HOMEWORK!

Searthdaynetwork

AVERAGE ECOLOGICAL FOOTPRINT IN USA IS 24 ACRES PER PERSON. WORLDWIDE, THERE EXIST 4.5 BIOLOGICALLY PRODUCTIVE ACRES PER PERSON.

http://www.earthday.net/footprint/index.asp

21

For Thursday, please calculate your ecological footprint TWICE:

<u>Once</u> for your life here in the U.S. A <u>second</u> time using the same information, but choose a different country.

http://www.earthday.net/footprint/index.asp

Frequently Asked Questions re: Ecological Footprint: http://www.rprogress.org/ecological_footprint/footprint_FAQs.htm)

Bring the Numbers to Class on Thursday. Convert to Acres.

Ecosystem service*	Examples			
Gas regulation	Carbon dioxide/oxygen balance, ozone for protection against ultraviolet light			
Climate regulation	Greenhouse gas regulation, dimethyl sulphide production affecting cloud formation			
Disturbance regulation	Storm protection, flood control, drought recovery, and other aspects controlled by vegetation structure			
Water regulation	Provisioning of water for agricultural (such as irrigation) or industrial (such as milling) processes or transportation			
Water supply	Provisioning of water by watersheds, reservoirs, and aquifers			
Erosion control and sediment retention	Prevention of loss of soil by wind, runoff, or other removal processes; storage of silt in lakes and wetlands			
Soil formation	Weathering of rock and the accumulation of organic material			
Nutrient cycling	Nitrogen fixation, nitrogen, phosphorus, and other elemental or nutrient cycles			
Waste treatment	Waste treatment, pollution control, detoxification			
Pollination	Provisioning of pollinators for the reproduction of plant populations			
Biological control	Keystone predator control of prey species; reduction of herbivory by top predators			
Refugia	Nurseries, habitat for migratory species, regional habitats for locally harvested species, or overwintering grounds			
Food production	Production of fish, game, crops, nuts, and fruits by hunting, gathering, subsistence farming, or fishing			
Raw materials	The production of lumber, fuel, or fodder			
Genetic resources	Medicine, products for materials science, genes for resistance to plant pathogens and crop pests, ornamental species (pets and horticultural varieties of plants)			
Recreation	Ecotourism, sport fishing, and other outdoor recreational activities			
Cultural	Aesthetic, artistic, educational, spiritual, and/or scientific values of ecosystems			

Ecupator "good" included in computer actrices. Sance Adapted with premission from Robert Covanna et al., "The value of the world's computers services and nat capital," Namee, May 1997. Brennan and Withgott 2005 Consilience in Conservation Biology

Science and the Humanities

* the uniting of knowledge