
Lecture 28, 28 Nov 2006

Conservation Biology ECOL 406R/506R University of Arizona Fall 2006

> Kevin Bonine Kathy Gerst

Conservation & Economics

1

2

Lab this week: meet 1230 s-side BSE 328 on 01 Dec

Housekeeping, 28 November 2006

-Thank our speakers... -Exam Key on website

Today: Economics and Sustainable Development (Ch12)

Thurs 30 Nov: Forbes Lobby Creativity Project Tues 05 Dec: Final day of class Thurs 14 Dec: Final Exam 1100-1300h in this room

> <u>Short oral presentations :</u> 28 Nov - Amanda and Fred

Global Climate Change Lecture Series

All lectures will take place at UA Centennial Hall.

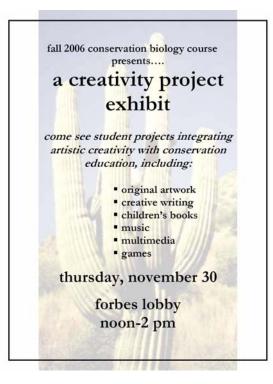
All lectures begin at 7pm and are free to the public. Call 520.621.4090 for more information.

Tuesday, October 17 Global Climate Change: The Evidence Malcolm Hughes, Professor of Dendrochronology

http://cos.arizona.edu/climate/

Tuesday, October 24 Global Climate Change: What's Ahead Jonathan Overpeck, Director of the Institute for the Study of Planet Earth and Professor of Geosciences

Tuesday, October 31 Global Climate Change: The Role of Living Things Travis Huxman, Assistant Professor of Ecology and Evolutionary Biology


Tuesday, November 7 Global Climate Change: Ocean Impacts and Feedbacks Julia Cole, Associate Professor of Geosciences

Tuesday, November 14 Global Climate Change: Disease and Society Andrew Comrie, Dean of the Graduate College and Professor of Geography and Regional Development

Tuesday, November 21 Global Climate Change: Could Geoengineering Reverse It? Roger Angel, Regents' Professor of Astronomy

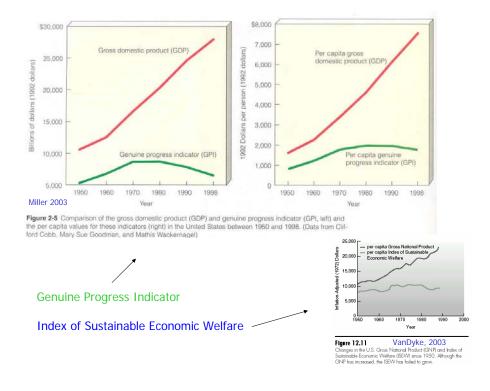
Tuesday, November 28 Global Climate Change: Designing Policy Responses Paul Portney, Dean of the Eller College of Management and Professor of Economics

3

Science a la Joe Camel

By Laurie David, Washington Pos Sunday, November 26, 2006; B01

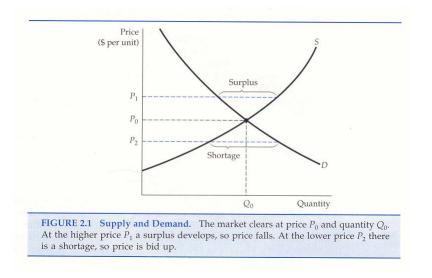
At hundreds of screenings this year of "An Inconvenient Truth," the first thing many viewers said after the lights came up was that every student in every school in the United States needed to see


<text><text><text><text><text><text><text><text><text><text><text>

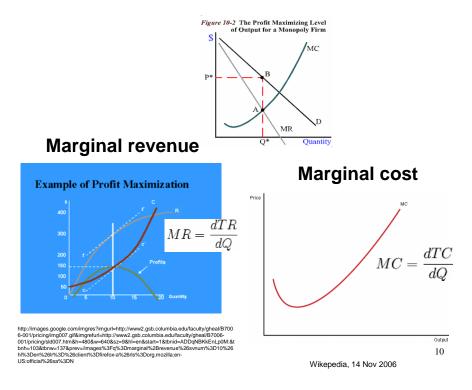
Laurie David, a producer of "An Inconvenient Truth." is a Natural Resources Defense Council trustee and founder of StopGlobalWarming.org

Figure 2.13 An Indonesian boy wading in a polluted river suffers external costs. External costs are costs not borne by the buyer or seller; they may include water pollution, aesthetic harm, human health problems, property damage, harm to aquatic life, aesthetic degradation, declining real estate values, and other problems.

Brennan and Withgott 2005


Economic Growth vs. Development -efficiency, sophistication, utility

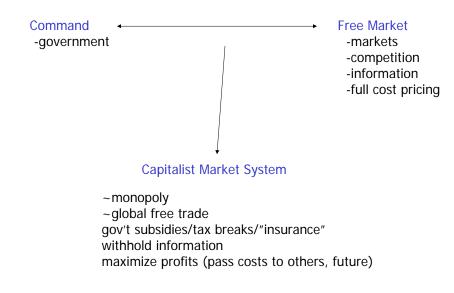
[Nonrival (air to breathe) or nonexclusive goods (UV protection from ozone)]

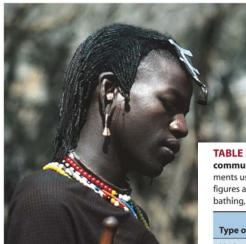

-Producer Pays/Polluter Pays -Dramatically less waste (packaging, scrubber sludge) -Taxation/Subsidies -Pollution Rights Product itself -Precautionary Principle

Government strategies and regulation -Stable, democratic government required?

Economics Primer...

Pindyck and Rubinfeld 1992 9


Adam Smith 1909 (voluntary transactions) Invisible Hand – "turning selfish, uncoordinated actions into increased prosperity and relative social harmony"


- -Tragedy of the Commons
- -Externalities
- -Private Property

Market Failure

resources misallocated: "a few individuals or businesses benefit at expense of the larger society" (Primack 2006)

Traditional Neoclassical Economics (Miller 2003):

nomadic Maasai

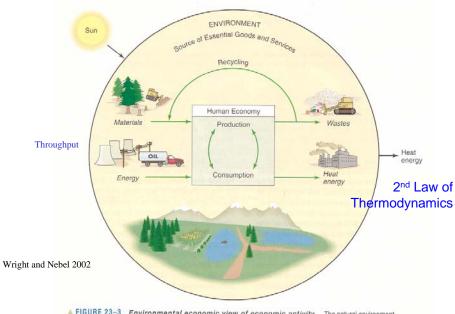
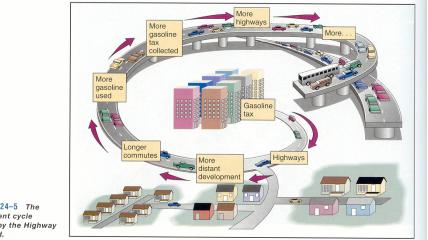

Private Property?

TABLE 28.1
Water use by people in different sorts of communities in Arabia
People in indigenous desert settle ments use one-tenth the water of people in modern towns. The figures are for all domestic water use, including drinking, washing, bathing, and other water demands.


240 120
120
80
28

^a New York City has a similar usage rate.

ANNAL PHYSICLOGY, Table 28.1 C Drawn for

[▲] FIGURE 23-3 Environmental economic view of economic activity. The natural environment encompasses the economy, which is constrained by the resources found within the environment.

► FIGURE 24–5 The development cycle spawned by the Highway Trust Fund.

Wright and Nebel 2002

15

Internal Market Costs VS. Externalities -External to Market Forces

-Noise

- -Pollution -Acid rain -Erosion -Global Warming -Eutrophication -Disease -Asthma
- -Birth Defects
- -Behavior and Intelligence

Vs.

Positive DISCOUNT RATE

Throughput HIGH-ENTROPY

Figure 12.9 The "houglass analogy" of economist Nicolas GeorgescuRoegen illustrates the relationship between entropy and economics. The sond in the upper part of the houglass represents earth's low-entropy resources. As humans consume these resources, high-entropy wastes are prochards. Regardless of the consumption rate, the sand in the upper half is destined to run out.

Index of Sustainable Economic Welfare (p. 355 Van Dyke 2003)

- **Income Distribution** 1
- Net Capital Growth 2
- Natural Resource Depletion/ 3 Environmental Damage
- Unpaid Household Labor 4

(social and environmental justice)

Herman Daly

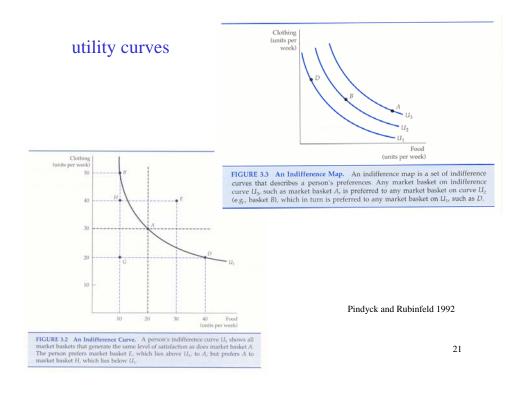
Former Environmental Economist with Worldbank Professor at U. Maryland

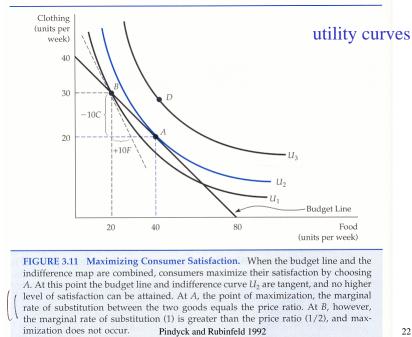
Utility vs. Throughput Utility not measurable; it is an experience

Circulatory system vs. digestive system (perpetual motion machine)

19

Wealth vs. IIth (accumulation of goods vs. bads)


Micro vs. Macro economics (MR=MC vs. endless)


"SATISFICING" Development vs. Growth

If resources infinite then price = 0, but if pay for resources then can redistribute wealth

Center for the Advancement of the Steady State Economy

http://www.steadystate.org/Index.html

Ecosystem service*	Examples
Gas regulation	Carbon dioxide/oxygen balance, ozone for protection against ultraviolet light
Climate regulation	Greenhouse gas regulation, dimethyl sulphide production affecting cloud formation
Disturbance regulation	Storm protection, flood control, drought recovery, and other aspects controlled by vegetation structure
Water regulation	Provisioning of water for agricultural (such as irrigation) or industrial (such as milling) processes or transportation
Water supply	Provisioning of water by watersheds, reservoirs, and aquifers
Erosion control and sediment retention	Prevention of loss of soil by wind, runoff, or other removal processes; storage of silt in lakes and werlands
Soil formation	Weathering of rock and the accumulation of organic material
Nutrient cycling	Nitrogen fixation, nitrogen, phosphorus, and other elemental or nutrient cycles
Waste treatment	Waste treatment, pollution control, detoxification
Pollination	Provisioning of pollinators for the reproduction of plant populations
Biological control	Keystone predator control of prey species; reduction of herbivory by top predators
Refugia	Nurseries, habitat for migratory species, regional habitats for locally harvested species, or overwintering grounds
Food production	Production of fish, game, crops, nuts, and fruits by hunting, gathering, subsistence farming or fishing
Raw materials	The production of lumber, fuel, or fodder
Genetic resources	Medicine, products for materials science, genes for resistance to plant pathogens and crop pests, ornamental species (pets and horticultural varieties of plants)
Recreation	Ecotourism, sport fishing, and other outdoor recreational activities
Cultural	Aesthetic, artistic, educational, spiritual, and/or scientific values of ecosystems

