Lecture 02, 23 Aug 2007 Ecological Footprint What is Conservation Biology?

> Conservation Biology ECOL 406R/506R University of Arizona Fall 2007

Kevin Bonine Cathy Hulshof please see us after class.

1. If not in lecture Tuesday,

Upcoming Readings

Public Water Lecture with Peter Gleick

today: Textbook, chapter 1; Noss 1999 Tues 28 Aug: Textbook chapter 3; Callicott 1997 (from Mefle and Carroll) Thurs 30 Aug: Textbook Ch. 3, Leopold readings [Q1 due 30 Aug if you choose to answer.]

Fresh water availability is a growing issue of concern across the world, butno where more than in arid lands. Tucson is no

How can we define **sustainable water policies**, based on sound laws and science? To what extent will water transfers the economics of shifting water - help us reconcile growth and supplies which are limited, keeping in mind that global well as land-use changes, will likely affect both surface and groundwater systems?

Sustainable Tucson believes Dr. Gleick's vision can help inform local planning by bringing the experience of many bear on Tucson's creative solutions to long-term water security.

Dr. Gleick will address water experts and other leaders at the Arizona Hydrologic Society's regional confe Unlimited Growth, and Quality of Life: Can We Have It All?" to be held August 27 - 30 in Tucson.

Contact Madeline Kiser (<u>mkiser@dakotacom.net</u>) or Susan Williams (susanleewilliams@cox.net) for more information.

Will spojecienso of our water augoly in the distant finiture – even in the next decade or two – be accurate? How will prolonged drought affect both water quantity and quality? What impacts will water supply have on the region's economic viability? Sustainable Tixcosi to -bot of a public lecture by international water exept. Peter Glock: A dang with the Water Resources Resear Center (WRRC) and Institute for the Study of Planet Earth (ISPE) at the University of Arizona, and the Southern Arizona Leadenshi Conneil (SALC).

A MacArthur Fellow and widely published in leading scientific journals, Dr. Peter Gleick is one of the world's top experts on the impacts of climate change on water supply. His work with communities and governments across the Southwest and the world brings a broad nersnervice to the local discussion.

The joint planning of this public lecture amongst university departments, civic, business, and community groups, points to exciting new dialogue over water and sustainability taking place in our community. The lecture will take place in **Tucson on August 30, at 7:30 p.m. at Temple Emanu-El - 225 N. Country Club Rd.**

Conservation Biology 406L/506L

24 Aug. Tumamoc Hill and Introduction, VAN ecological research, study plots,

geology, Tucson basin, desert vegetation, introductions and schedules

http://www.sustainabletucson.org/

http://www.ecoalition.org/index.html

Think Globally, Act Locally

Quiz:

What were two of the four questions that the Noss (1999) paper attempts to address?

conservation biologists today: 1) are there any robust principles of conservation biology? 2) Is advocacy an appropriate activity of conservation biologists? 3) Are we educating conservation biologists properly? 4) Is conservation biology distinct from other biological and resource management disciplines? 1 answer three of these

Distinguish between Conservation and Preservation (as defined in the Noss paper).

from what it means today. Conservation, in America at least, was strictly utilitarian and was opposed to "preservation," which meant protecting the wonders of nature, mostly for the spiritual and aesthetic enrichment of mankind (Fox 1981). Preservation today is interpreted as a hands-off approach, one option in a

5

Figure 1.5 The first issue of the journal Conservation Biology, published in May 1987. (Photograph courtesy of E. P. Pister.) Meffe and Carroll 1997 What is Conservation Biology?

When and what were the origins of the discipline?

Van Dyke Chapter 1 (p. 4)

Ethical and Conceptual Roots

- 1. Intrinsic Value (revisit in Ch.3)
- 2. Ecosystem services
- 3. Aesthetic, spiritual enrichment

7

11

Ecosystem service*	Examples
Gas regulation	Carbon dioxide/oxygen balance, ozone for protection against ultravioler light
Climate regulation	Greenhouse gas regulation, dimethyl sulphide production affecting cloud formation
Disturbance regulation	Storm protection, flood control, drought recovery, and other aspects controlled by vegetation structure
Water regulation	Provisioning of water for agricultural (such as irrigation) or industrial (such as milling) processes or transportation
Water supply	Provisioning of water by watersheds, reservoirs, and aquifers
Erosion control and sediment retention	Prevention of loss of soil by wind, runoff, or other removal processes; storage of silt in lakes and wetlands
Soil formation	Weathering of rock and the accumulation of organic material
Nutrient cycling	Nitrogen fixation, nitrogen, phosphorus, and other elemental or nutrient cycles
Waste treatment	Waste treatment, pollution control, detoxification
Pollination	Provisioning of pollinators for the reproduction of plant populations
Biological control	Keystone predator control of prey species; reduction of herbivory by top predators
Refugia	Nurseries, habitat for migratory species, regional habitats for locally harvested species, or overwintering grounds
Food production	Production of fish, game, crops, nuts, and fruits by hunting, gathering, subsistence farming or fishing
Raw materials	The production of lumber, fuel, or fodder
Genetic resources	Medicine, products for materials science, genes for resistance to plant pathogens and crop pests, ornamental species (pets and horticultural varieties of plants)
Recreation	Ecotourism, sport fishing, and other outdoor recreational activities
Cultural	Aesthetic, artistic, educational, spiritual, and/or scientific values of ecosystems

nea et al., "The value of the world's ecor Brennan and Withgott 2005

Modern Con Bio starts in Colter's Hell...

Van Dyke Chapter 1 (p. 5)

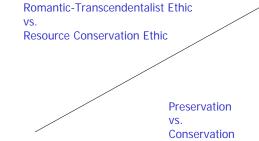
"Genuine and enduring conservation can occur only when humans knowingly use resources at less than maximum sustainable rates or forgo the use of some resources altogether." [RESTRAINT]

> -Philosophy (e.g., Plato) -Religion (e.g., Judaism) -Nobility and their Forests

Thomas Moran on the Mammoth Terraces Photograph by William H. Jackson, 1871. (National Park Service)

John Colter 1807 (~Lewis and Clark) Yellowstone Area

10


12

~Romantic-Transcendentalist Ethic:

Ralph Waldo Emerson Henry David Thoreau John Muir -Sierra Club 1892 -NGO -Education, Lobby, Law/Politics

Yellowstone National Park 1872 Yosemite National Park 1890

ESA 1917 --> Nature Conservancy 1950

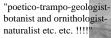
Ralph Waldo Emerson 1803-1882

A Successful life

"To laugh often and much; to win the respect of intelligent people and the affection of children; to earn the appreciation of honest critics and endure the betrayal of false friends; to appreciate

beauty; to find the best in others; to leave the world a bit better, whether by a healthy child, a

garden patch, or a redeemed social condition; to know even one life has breathed easier because you have lived." - Ralph Waldo Emerson -


Henry David Thoreau (1817-1862)

"Many go fishing all their lives without knowing that it is not fish they are after."

"Beware of all enterprises that require new clothes. "

"It is not worthwhile to go around the world to count the cats in Zanzibar. "

"Wherever a man goes, men will pursue him and paw him with their dirty institutions, and, if they can, constrain him to belong to their desperate oddfellow society. "

John Muir (1838-1914)

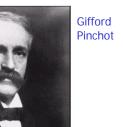
gist-

15

17

Teddy Roosevelt (president 1901-1909)

Figure 1.3 VanDyke 2003 Theodore Rocsevelt, the twenty-sixth president of the United States 11901–1909), greatly supported the role of the federal government in conservation.


"To Roosevelt, it was clear that a handful of individuals and their companies were reaping most of the profits from natural resources that rightfully belonged to all citizens." Van Dyke 2003, p. 10

early 1900s "Trustbuster"

Resources for use, but forever.

National Wildlife Refuge System (52 designations by TR)

"The greatest good for the greatest number for the longest time"

resource conservation ethic: 1. Equity 2. Efficiency

18

Figure 1.4 VanDyke 2003 Gilford Pinchot, early head of the U.S. Forest Service and father of the resource conservation effici. From an original staff of only 123 in 1969, Pinchot Bill the forest Service to an organization of 1.500 people administering 150 million acces of public land within 10 years.

Sustainable Use Maximum Sustained Yield

USE those resources!

19

21

Modern Conservation Biology - National Parks - U.S.

Transferable?

Rachel Carson Silent Spring 1962

-Bioaccumulation -Levels and scale

-Environmental degradation threaten human health

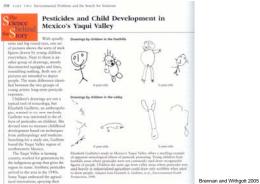
-Increased Public Awareness

Figure 1.5 Van Dyke 2003 Aldo Leopold, early twentieth-century of the modern land ethic. servationist and father of

Land Health and the A-B Cleavage

Game Management 1932

A Sand County Almanac (1966) -evolution/ecology land ethic


Commodities (A) vs. Processes (B)

Aldo Leopold

20

Figure 1.6 Van Dyke 2003 Rachel Carson, U.S. Fish and Wildlife Service biologist and author of Silent Spring (1962), a seminal book in the modern environmental movement

23

Table 2.1 Ecosystem Services and Functions Ecosystem service* Examples Gas regulation Climate regulation Disturbance regulati Carbon dioxide/oxygen balance, ozone for protection against ultraviolet light Greenhouse gas regulation, dimethyl sulphide production affecting cloud formation Storm protection, fload control, drought recovery, and other aspects controlled by vegetation streame Water regulation Provisioning of water for agricultural (such as irrigation) or industrial (such as milling) processor or transportation Provisioning of water by watersheds, reservoirs, and aquifers Prevention of loss of soil by winds, runoff, or other tenronal processes; storage of silt in lakes and wetlands Weathering of rock and the accumulation of organic material Nitrogen finantion, nitrogen, phonphonsa, and other elemental or nutrient cycles Waster transmers, pollurion, cortor(), devoilitation Waster transmers, pollurion, cortor(), devoilitation Revrotos productor control of prey species, relations of hedrivory by top predators Narseries, habitati for migratory species, regional habitats for locally harvested species, or overwrittering grounds Water supply Erosion control and sediment retention Soil formation Nutrient cycling Waste treatment Pollination Biological control Refugia Food production or fishing The production of humber, fuel, or fodder Medicine, products for materials science, genes for resistance to plant pathogens and crop persts, ornamental species (pers and horricultural varieties of plants) Economisms, growt fishing, and often orochoor recreational activities Aesthetic, artistic, educational, spiritual, and/or scientific values of ecosystems Row materials Genetic resources Recreation Cultural "Ecosystem "goods" included in ecosystem sension. Source: Adapted with pennission from Robert Costa capital," Native, May 1997. stom services and natural

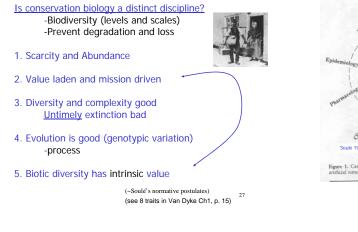
anza et al., "The value of the world's ecorys Brennan and Withgott 2005

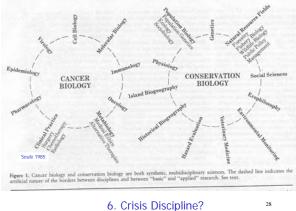
Journal of Wildlife Management (1937) Wildlife Society Bulletin

VS.

Conservation Biology Biological Conservation

(~movement from individual game species to large scale and generalized approaches)




Meffe and Carroll 1997 May 1987. (Photogn P. Fisher.) 1985

the founding of the Society for Conservation Biology (SCB), with the explicit mission "to help develop the scientific and technical means for the protection, maintenance, and restoration of life on this planet – its species, its ecological and evolutionary processes, and its particular and total environment."

(from Noss 1999)

26

Problems Addressed by Conservation Biologists:

1 Genetic Diversity

variation, inbreeding, drift, hybridization

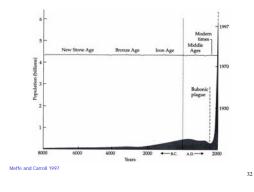
- 2 Species MVP, PVA small populations
 - declining populations
 - metapopulations

3 Habitat

- loss, fragmentation, isolation, heterogeneity 4 Ecosystem Processes
- scale
- 5 Human sustainability the crux

"In crisis disciplines, one must act before knowing all the facts; crisis disciplines are thus a mixture of science and art, and their pursuit requires intuition as well as information" (Soulé 1985).

-Noss 1999

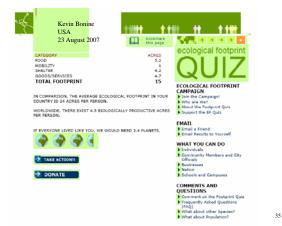

29

Humans on planet Earth

systems. Nevertheless, conservation biologists increasingly recognize that the proximate and ultimate threats to biodiversity virtually all have to do with humans.

Noss 1999, p. 118

31


For Today, please calculate your ecological footprint TWICE:

<u>Once</u> for your life here in the U.S. A <u>second</u> time using the same information, but choose a different country.

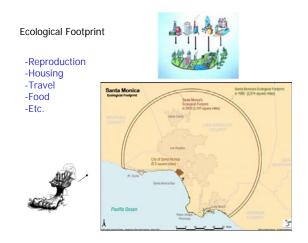
http://www.earthday.net/footprint/index.asp

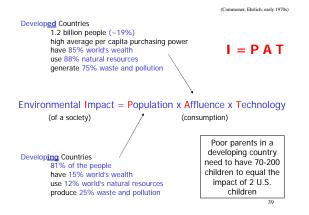
Frequently Asked Questions re: Ecological Footprint: http://www.rprogress.org/ecological_footprint/FAQs.htm)

Bring the Numbers to Class on Thursday. Convert to Acres.

<section-header><section-header><section-header><section-header><list-item><list-item><complex-block>

1948!!!


In 1948 G. Evelyn


Hutchinson warned of the dangers of the expanding human population and the disruption of geochemical cycles, one outcome of which could be global warming.

(from Noss 1999)

33

One of Commoner's lasting legacies is his four laws of ecology, as written in The Closing Circle in 1971. The four laws are:

1. Everything is Connected to Everything Else. There is one ecosphere for all living organisms and what affects one, affects all.

2. Everything Must Go Somewhere. There is no "waste" in nature and there is no "away" to which things can be thrown.

3. Nature Knows Best. Humankind has fashioned technology to improve upon nature, but such change in a natural system is, says Commoner, "likely to be detrimental to that system."

4. There Is No Such Thing as a Free Lunch. In nature, both sides of the equation must balance, for every gain there is a cost, and all debts are eventually paid. 40

Theoretical Basis of Conservation Biology?

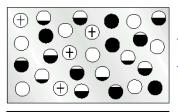
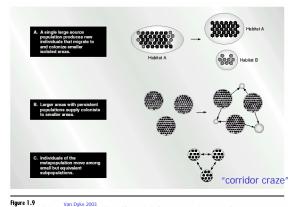


Figure 1.8 Figure 1.8 Diagrammatic representation of an arrangement of local populations ("metapopulation") based on Andewartha and Birch (1954). Empty circles represent Rovodble habitats that individuals do not occupy. Partially or completely filled cricles represent fravotable habitats and relative densities of individuals in them as a proportion of the habitatis maximum capacity. Creases indicate habitats in which local populations recently became extinct.


Van Dyke 2003

-Metapopulations

-Island Biogeography MacArthur and Wilson 1963

- -Testable Hypotheses
- -Thresholds

41

gure 1.9 Van Dyke 2003 see vaniations of the metapopulation concept. Although different in detail, all represent metapopulations as spatially distinct groups bopulations) that disperse to or more physically separated habitete.

Noss 1999

Is there a special conservation biology?

Origins

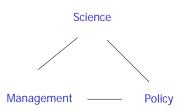
Soulé et al. 1978+ SCB 1986 *Conservation Biology* 1987

Ideas -Precautionary Principle -Value Laden -Species differences... -Umbrella species -Advocacy Pattern and Generality vs. Special Case

p. 116, Noss 1999

44

46



Responsible Advocacy?

Ethical Advocacy? p.117, Noss 1999: tropical rainforest vs. economic development program

45

Is ConBio distinct discipline?

