Lecture 07, 11 Sept 2007
Biodiversity
Conservation Biology
ECOL 406R/506R
University of Arizona
Fall 2007
Kevin Bonine
Cathy Hulshof

Upcoming Readings today: Text Ch. 4, and pp. 207-213 Thurs 13 Sept: Text Ch. 2; ESA \& NEPA links Tues 18 Sept: SDCP and ESA links

Thanks to Guy McPherson Q2 due 13 Sept if you choose Readings for Debate 1

Conservation Biology Lab 406L/506L

Next Lab SATURDAY 15 September 0700h S or W side BSE (4th and Highland) Hat, water, sunscreen, close-toed shoes Lunch, snacks, weather gear, (\$?)

Readings on Course Website - print:
Handouts 1 and 2,
last 3 pages of:
"Miscellaneous Mt. Lemmon-related information "

Debate 20 Sept 2007: Slight Schedule Change:
Should the flat-tailed horned lizard (Phrynosoma mcallii) be ESA listed?

Three groups - one will debate, another will evaluate, third will observe, then we rotate.

$\stackrel{\ominus}{\bullet}$	Debate 1 (20 Sept.)
	Group A debate
	Group B evaluate
	Group C observe
	Debate 2 (23 Oct.)
	Group A observe
	Group B debate
	Group C evaluate
	Debate 3 (15 Nov.)
	Group A evaluate
	Group B observe
	Group C debate

Debate 1 (20 Sept.)
506 A assist
506 B assist
506 C observe
Debate 2 (23 Oct.)
506 A observe
506 B assist
506 C assist
Debate 3 (15 Nov.)
506 A assist
506 B observe
506 C assist

3

*Ed Ayres (1999, God's Last Offer

A U.S. Geological Survey report released in November 2006 indicated that the Beaufort Sea polar bear population has experienced a significant drop in cub survival. The study also determined that adult males weighed less and had smaller skulls than those captured and measured two decades ago.

Ursus maritimus
In recent years, winter sea ice has fallen by at least 600,000 square miles, double the size of Texas.

Conservationists hope - and Alaska business interests fear that designating polar bears as threatened due to global warming will carry a huge economic cost, forcing federal agencies around the country to consider the affect on polar bears before granting permits that would increase greenhouse gas emissions.

Arizona Daily Star, 10 April 2007

Published: 09.08.2007
New forecast: Two-thirds of polar bears could die off THE ASSOCIATED PRESS
WASHINGTON - Two-thirds of the world's polar bears will be killed off by 2050 and the entire population gone from Alaska - because of thinning sea ice from global warming in the Arctic, government scientists forecast Friday.
Only in northern Canada and northwestern Greenland are polar bears expected to survive through the end of the century, said the U.S. Geological Survey, which is the scientific arm of the Interior Department.
USGS projects that polar bears during the next half-century will lose 42 percent of the Arctic range they need to live in during summer in the Polar Basin when they hunt and breed. A polar bear's life usually lasts about 30 years.

Biodiversity (Biological Diversity)

"structural and functional variety of life forms at genetic, population, community, and ecosystem levels"

Nothing in biology makes sense except in the light of evolution.

Theodosius Dobzhansky

Figure 2.5 Diversity of marine families from the Cambrian to the present. The asterisks mark the five major mass extinction events.

Figure 2.6 Ternestrial plant species richness. Ferns, gymnosperms, and angiosperms have, in turn, dominated the world's flora. (Modified from Signor 1990.)

Figure 2.7 Extinctions of families through geologic time. Figure 2.7. Extinctions of families through geologic time.
The five hisrtorical mass extinction events are marked with an asterisk.

Adaptive Radiation

Figure 5-10 Adaptive radiation of mammals began in the first 10-12 million years of the Cenozoic era (which began about 65 million years ago) and continues today. This evolution of a large number of new species is thought to have resulted when huge numbers of new and vacated ecological niches became available after the mass extinction of dinosaurs near the end of the Mesozoic era. (Used by permission - Cecie Starr and Ralph Tagart Biotog: Cecie Starrand Ral Jhaggar, Biology: The Unity and Diversity of Life,
mont, Calif.: Wadsworth, 1998)
Miller 2003

| Mesozoic | Marsupials |
| :--- | :--- | :--- |
| (kangaroos, etc.) | | Rabbits

Estimates of Numbers and Status of Species in Hawai‘i

Taxon	Total*	Endemic	Non-Indigenous	Threatened or Endangered
Cyanobacteria (b/g alga	201	11	0	
Algae	1,11\%	104	5	
Other Protists	1,22	1	0	
Fungi and Lichens	3,149	972	8	
Flowering Plants	2,14¢	896	1,13¢	262
Other Plants	639	226	37	13
Cnidarians	450	104	28	
Insects	8,15	5,24申	2,78	1

Amphibians	7	0	7	
Reptiles	29	0	26	
Birds	30	63	55	31
Mammals	44	2	19	1
Other vertebrates	77	0	0	31
TOTAL	25,714	9,987	5,17	1

http://hawaiiconservation.org/conservationresources.asp (2003) 15

Hawaiian Endangered Species

Unfortunately, Hawai'i has the highest number of listed threatened and endangered species in the nation. There are 394 threatened and endangered species in the State of Hawai‘i, of which 294 are plants, 57 invertebrates, and 43 vertebrates.

What is biodiversity?

How many species on earth?

Primack 2006, Fig 3.6

FIGURE 3.10 For five groups of Chilean animals, the cumulative percentage of the known species described from 1750 to 2000. Note that the majority of birds and mammals were largely described by 1900, and probably few new species remain to be discovered. In contrast, polychaete worms and bark lice were largely neglected by early taxonomists and are only now being investigated and described. Amphibians are intermediate in their intensity of study. (After Primack et al. 2001.)

Mother Nature's

The Human Genome Project has not cured any diseases yet-but it's revolutionizing

Biodiversity

1. Genetic
(nat. sel.)
2. Species

3. Ecological
forests, deserts, lakes, wetlands, reefs etc.
4. Functional
energy flow
nutrient cycling
etc.

Figure $4.15 \quad$ Van Dyke 2003
Biodiversity and scale. A method of categorizing biodiversily at regional, coarse, intermediate, and local geographic scales.
Modified from Poiani et al. (2000). © 2001 American Institute of Biological Sciences.

Biodiversity

1. Genetic
2. Population/Species
3. Community/Ecosystem
4. Landscape

Where is biodiversity?
One tree in Peru with same ant diversity as Britain

Species Richness and Latitude

FIGURE 3.5 In North America, as in all the continents, the numbers of bird, tree, and mammal species increase toward the Tropics. The numbers of species indicated in the bar graphs correspond to latitude in the map at left. Tree species diversity is not available for some lower latitudes. (From Briggs 1995.)

Altitude?

Figure 4.12
Latitudinal patterns in species tichness from tropical to temperate regions. In most taxa the number of species increases from temperate to tropical regions.

$$
\text { Van Dyke } 2003
$$

After Reid and Miller (1989), Reprinted from Huston (1994).

FIGURE 3.1 Tropical rain forests are found predominantly in wet, equatorial regions of America, Africa, and Asia. Eight thousand years ago, tropical forests covered the entire shaded area, but human activities have resulted in the loss of a great deal of forest cover, shown in the darkest shade. In the lighter shaded area forests remain, but they are no longer true tropical forests; instead they are (1) secondary forests that have grown back following cutting, (2) plantation forests such as rubber and teak, or (3) forests degraded by logging and fuelwood collection. Only in the regions shown in black are there still blocks of intact natural tropical forest large enough to support all of their biodiversity. (After Bryant et al. 1997.)

Tropical

 Rainforests

Coral Reefs

FIGURE 3.4 Global distribution of the coral reef biome. (After Wells and Hanna 1992.)

Lissamphibia

Urodela
(salamanders)

10 families, 60 genera, 516 spp.

Urodela families

Urodela families

Figure 3-4 Distribution of salamander families Cryptobranchidae, Rhyacotritonidae, Amphiumidae, Dicamptodontidae, and Ambystomatidae.

What factors correlated with high diversity?

- Energy
- Precipitation
- Temperature
- Area
- Habitat heterogeneity (e.g., foliage height and birds)
- ~Stable environment
- Moderate (intermediate) disturbance level (shifting mosaic, no climax)

Other Miller 2003
Figure 4-12 Key physical and chemical or abiotic factors affecting terrestrial ecosystems (left) and aquatic life zones (right).

Range of tolerance of abiotic factor(s)

Terrestrial Biomes

(Forest, Desert, Grassland, Tundra, etc.)
Biotic (~Vegetative) Communities
$\underline{\text { Climate }}$

1. Temperature
2. Precipitation
(3. Soil type)

- Latitude
- Altitude

Threats to biodiversity - habitat loss

Thanks to Chuck Price
41

Figure 4.4
A general speciesarea relationship among some Caribbean islands. Note that species richness on islands increases with increasing area
Based on data from Darlington (1957:483).

Figure 4.5
An illustration of the relationship between area and species richness of (a) granivores and (b) all small marrmal species in woodlots (crosses) and contiguous forest sites (squares). Species richness increases with woodlot area. In (a), note that granivore species richness increases with area more rapidly in contiguous forest than in woodlots. This pattern suggests that species richness not only declines with habitat loss, but also with habitat fragmentation.
After Nupp and Swihar (2000).

Woodlots vs. contiguous forest

43

Species-Area Relationship

3 step loss of biodiversity (Rosenzweig)

1. Endemics
2. Sink populations
3. Stochasticity

Therefore end up with lower steady state species richness and loss of biodiversity

Figure 4.6

When the size of a natural arep is decreased, the first species lost qre endemics. Next, sink species (those that are not reproducing fast enough to replace themiselves) go extinat locally Finally, fallure to replace accidental losses fast enough brings the province to a still lower sleady state of biodiversity:

Figure 4.7

The "cookie cutter" model of the effects of habilat loss on endemic species. If the cookie cutter strikes at subarea A, seven species lose habilat but none is exterminated. In contrast, if the cookie cutter strikes subarea B, an area containing species with more restricted ranges, seven species lose habitat, and four species are exterminaled. Thus, random habitat loss produces a
dispropoitionalely high rale of extinction in endemic species
After Pimm (1998).
Van Dyke 2003

Species Focus ---> Biodiversity and Process Focus (ESA)

What being lost vs. why...

> Species = ?

Biological Species Concept (Mayr)
"a group of interbreeding populations that are reproductively isolated from other such groups"

2-morphological/typological species concept (plants)
3-evolutionary species concept 4-genetic species concept
5-paleontological species concept
6-cladistic species concept

Biological Species Concept

1. Testable and operational

2. Definition compatible with established legal concepts
3. Focus on level of biodiversity that agrees with tradition of conservation

Conserve Species as
TYPES
or as
EVOLUTONARY UNITS

Ernst Mayr (1904-2005)
Published papers for > 80 years

Figure 22.3
Ernst Mayr in New Guinea, 1927. During his expedition, the naturalist (on the right, photographed with his guide) was struck divided the birds of the Arafak Mountains into separate species. It was one of many experiences that led to Mayr's biete species. species concept which emphasizes interbeeding within species and reproductive isolation between species.

You've also written that we humans have extraordinary responsibility because of our uniqueness as a species. Yes, humans are basically responsible for all the bad things that at the present time happen to our planet, and we are the only ones who can see all these things and do something about them. If we would stop the human population explosion, we would have already won two-thirds of the battle. That we live here just as exploiters of this planet is an ethic that does not appeal to me. Having become the dominant species on our planet, we have the responsibility to preserve the well-being of this planet. I feel that it should be a part of our ethical system that we should preserve and maintain and protect this planet that gave origin to us.

Ernst Mayr interviewed in Campbell 1993

1. Indicator Species
-migratory birds -amphibians
2. Keystone Species -top predators
-key pollinators

3. Umbrella Species

Native Species
VS.
Nonnative, exotic, alien

Measuring Biodiversity

- alpha - beta - gamma

Alpha
species within a community

community

- all populations occupying a given area at a given time
- often broken into taxonomic groups or functional roles

1) Species Richness (\# of species)
2) Species Evenness (how many of each type?)

Shannon Diversity Index (richness and evenness)

$$
\mathrm{H}^{\prime}=-\sum_{i} p_{i} \ln \left(p_{i}\right), \quad(i=1,2,3 \ldots \mathrm{~S})
$$

$p_{i}=$ proportion of total community abundance represented by th species

Table 4.3 Abundance (individuals/10 ha) and diversity (Shannon index, $H^{\prime}=-\Sigma\left(p_{i} \ln p_{i}\right)$ of avian species from two tallgrass prairie sites at DeSoto National Wildlife Refuge, Iowa. Note that site A, with fewer species (8) and two highly abundant species (common yellowthroat and field sparrow), has a lower value of diversity than site B, which has more species (11) that are more equally abundant. Van Dyke 2003

SPECIDS	SIHE A	SINE B
Common yellowthroat	8.24	1.21
Field sparrow	2.94	2.84
Dickcissel	1.18	2.23
Red-winged blackbird	0.29	0.81
Brown-headed cowbird	2.06	1.82
American goldfinch	1.47	1.02
Ringneck pheasant	0.59	1.63
Mourning dove	1.18	0.61
Eastern kingbird	-	1.60
Grasshopper sparrow	-	4.48
Northern bobwhite	-	2.64
Shannon diversity $\left(H^{\prime}\right)$	1.64	2.25

Shannon Index in Tallgrass Prairie
(indiv spp abundance relative to total abundance)

What if removed three species from B?

Figure 4.3

Total species diversity can be measured as the product of the number of functional types and the number of species per functional type. Two populations may have the same species diversity and silll differ. For example, one may have many functional rypes and few functional analogues, and the other may have many analogues but few functional types. The relative number of functionally analogous species within each functional type is indicated by the width of the oval. Van Dyke 2003

Process and Pattern

1 Functional Types
2 Functional Analogs
Increase either to increase biodiversity

Which to preserve?

Niche:
Ecological role of a
species in a community

Measuring Biodiversity

- alpha - beta - gamma

Beta
area or regional diversity (beta richness)
diversity of species among communities across landscape
gradient

- slope, moisture, temperature, precipitation, disturbance, etc.

Whittaker's Measure $=$ (S/alpha) - 1
where $S=\#$ spp in all sites, alpha = avg. \# spp/site
a) if no community structure across gradient $=0$
-broad ecological tolerances, niche breadth
b) $100 / 10-1=9$ high beta diversity

Beta Diversity

1) quantitative measure of diversity of communities that experience changing environmental gradients
2) are species sensitive, or not, to changing environments? are there associations of species that are interdependent (plants, pollinators, parasites, parasitoids)?
3) how are species gained or lost across a TIME gradient?

Succession, community composition, effects of disturbance

Alpha and Beta Diversity Hotspots

Figure A Hot spots of rarity and species richness in the lower 48 United States. Read as a topographic map with concentric circles showing higher values of the rarity-weighted species richness index (RWRI). Hotspots are found in CA, the Death Valley region of Nevada, the Appalachian Mountains, and the Florida panhandle and Everglades. Many other regions of higher diversity are found in other parts of the U.S., and the Hawaiian islands (not shown) have the greatest concentration of range-restricted species by far. To achieve a high RWRI both α - and β-diversity must be high. (Modified from Stein et al. 2000.)

Groom et al. 2006

Figure 4.2
The number of ipecies on a given site in one bind of habitat is a meawre of apho diversiy lspecies sichness! the overoge number of species per site along on envircomental grodent (number of species per habilit) is a meawre of beto diversity. The rate of species change over tandscope scale distonces in the same hobitit is a measure of gamma diversily larographic replacement of species).

Measuring Biodiversity

- alpha - beta - gamma

Gamma

rate of change of species composition with distance (geography, rate of gain and loss of species)
alpha rarity with increased number of species
(fewer of each type)
beta rarity with habitat specialists
gamma rarity if restricted to particular geographic areas

```
Measuring Biodiversity
- alpha - beta - gamma
```


Missing?

Species role in ecosystem?
Rarity
Phylogenetic Representation
Ecological Redundancy

Edges vs. Interior (e.g., fragmentation)
(spp richness increases, but are broad generalists, not interior habitat specialists)

All species are not equivalent (normative valuation?)

Hawaiian Honeycreepers:

[^0]

Figure 4.9
Eight calegories of species abundance in British plants based on geographic range, habilat use, and relative population size. Note that only one calegory (broad habilat speciticity, wide geographic distribution, and large local population) can truly be considered "common." Species in the ocher seven calegories are rare in one or more dimensions.
Adapted from Rabinowitz, Cairns, and Dillon (1986).

Cyprinodon macularius
 Desert Pupfish

Desert pupfish declined due to the introduction and

spread of
Photograph Courtesy of John Rinne
exotic predatory and competitive fishes, water impoundment and diversion,
water pollution, groundwater pumping, stream channelization, and habitat modification.

Cyprinodon macularius

Desert Pupfish
Family Cyprinodontidae

-1-1/4 inches long max. age of three years
-females are gray and drab males are bluish, turning bright blue during spring breeding season.
-feed on insect larvae and other organic matter from pond bottom.
-prefer shallow pond depths, about 12 to 18 inches deep.

This tiny fish was once part of a widespread population, the range of which included the Colorado, Gila, San Pedro, Salt and Santa Cruz rivers and their tributaries in Arizona and California. The ancestors of the Quitobaquito and Sonoyta river pupfish are believed to have been cut off from their relatives in the Colorado River drainage about one million years ago.

The warm, slightly brackish water at Quitobaquito is ideal habitat for pupfish. Pupfish can tolerate salinity levels ranging from normal tap water to water three times saltier than the ocean. Therefore, they are well suited to desert environments where high evaporation rates create water with high salinity levels.

Although the water temperature at the spring is a constant $74^{\circ} \mathrm{F}$, the water temperature in the pond fluctuates greatly during the year, from about $40^{\circ} \mathrm{F}$ or cooler in January to almost $100^{\circ} \mathrm{F}$ in August, especially in shallow areas... very tolerant of rapid temperature change and low oxygen content due to summer heat.

Pricing Biodiversity
$R_{I}=\left(D_{i}+U_{i}\right)\left(\operatorname{deltaP} P_{i} / C_{i}\right)$
$D=$ distinctiveness
$\mathrm{U}=$ utility
delta $P=$ enhanced probability of survival $C=$ cost of strategy

Direct limited funds...
Ecological Contribution?

Rhynchocephalia

- evolved before dinosaurs
- world-wide distribution in Mesozoic
- most extinct at end Cretaceous (65mya)

Sphenodontidae

- 1 extant genus (Sphenodon)
- 2 extant species
- restricted to small islands of New Zealand
- long lived


```
Pricing Biodiversity
\(R_{I}=\left(D_{i}+U_{i}\right)\left(\right.\) deltaP \(\left._{i} / C_{i}\right)\)
\(D=\) distinctiveness
\(\mathrm{U}=\) utility
delta \(P=\) enhanced probability of survival \(C=\) cost of strategy
```

Direct limited funds...
Ecological Contribution?

[^0]:

