Virtual Ecosystems

W. Wayt Gibbs (Fall, 2003) describes in glowing, optimistic terms a novel approach by Neo Martinez aimed at unraveling the complexity inherent in food webs. A supercomputer crunches the numbers; sophisticated programming produces glitzy graphics. It all suggests great promise for better informing conservation actions. The imagery is enhanced by portraying Martinez as an ecological iconoclast imbued with a twinge of self-righteousness.

At the risk of being charged a Luddite, I suggest a reality check. Martinez and his team fail to recognize that space and its added structure matters. The natural world is hardly homogeneous. Nature’s complexity is admittedly daunting. Yet in their frontal assault to understand it, they appear to have dismissed a widely appreciated understanding that, while simple models necessarily exclude important aspects, those that are inordinately detailed may not be verifiable. One must balance complexity with transparency (1). Their models are opaque, even to themselves.

I was dismayed by the implication that ecologists haven’t made much progress in understanding dynamic complexity. We have, the list is lengthy, and much of the understanding, while admittedly imperfect, does inform conservation decisions. Critical or keystone species, the pervasiveness and importance of indirect effects, per capita rates of interaction, the legion of small-scale experiments proving the dynamic consequences of altered abundance, mechanistically understood trophic cascades are but a few. All the above relate immediately to food webs. Virtual ecosystems remain a pipe dream, a fantasy world, especially when divorced from ecological reality.

Should efforts continue to develop them? Yes. Computer simulations will certainly prove essential, but a healthy and necessary skepticism should be demanded before conservation decisions are based on model predictions. The degree to which the virtual world reflects natural reality must be known. Ground truthing, in which predictions are based on known food web interactions and their consequences, should be a prior requirement.

ROBERT T. PAINE
Professor Emeritus of Biology
University of Washington, Seattle

Neo Martinez and colleague respond:

Bob Paine emphasizes many of our same concerns with in silico explorations of ecological complexity. There is indeed a critical trade-off between simple, general abstract models and opaquely complex, many-parameter models of particular systems. A delicate balance needs to be tuned to the task and tools at hand. We follow Yodzis and Innes (1) who cogently argue for a productive intermediate approach to network dynamics based on a relatively few easily measured parameters (e.g., metabolic rate, body size). We add network structure with a simple “niche model,” which accurately predicts much of the topology of large natural food webs and is based on two readily estimated input parameters, species richness (2) and connectance (3). We also agree with, and study, the importance of considering spatial heterogeneity including prey refuges, metacommunities, and landscapes (2). While far from all-encom-
interactor. As Gibbs suggests, implications of model predictions should be studied before, rather than after, models inform conservation decisions. Such applications are not necessarily beneficial ecologically or ethically.

Another issue concerns whether ecology should follow other branches of biology and chemistry by vigorously pursuing rapidly advancing visualizations, informatics, and computation. Scientists have shown that these tools complement traditional experiments by enabling virtual experiments that formulate empirically-testable hypotheses while minimizing hazard and expense. We look forward to working closely with field ecologists to realize this synergy and bridge the gap between theoretical and empirical understanding. Finally, though it was beyond the scope of the Gibbs’ article, we acknowledge and sincerely appreciate all the pioneers that made our work possible by illuminating key mechanisms and patterns through careful observations, ingenious experiments, and wonderfully creative theory.

NEO D. MARTINEZ
Pacific Ecoinformatics and Computational Ecology Lab, California

JENNIFER A. DUNNE
PEarCE Lab, California and Santa Fe Institute, New Mexico


Join the Conversation

We welcome letters and comments on articles in this and other issues of *Conservation In Practice*, as well as on general topics of interest to conservation practitioners. We are looking for concise, thought-provoking ideas, opinions, and shared experiences.

Letters may be edited for clarity or brevity.

Please send contributions (up to 200 words) with full contact details to: kkohm@u.washington.edu

The Editors
*Conservation In Practice*,
Dept. of Biology Box 351800,
University of Washington
Seattle, WA 98195-1800 USA
Fax: 206-221-7839.

David Quammen

Monster of God
The Man-Eating Predator in the Jungles of History and the Mind

“Rich detail and vivid anecdotes of adventure... A treasure trove of exotic fact and hard thinking.”
—New York Times Book Review, front page

“Quammen’s ability to turn science into high drama is unmatched.” —Outside

Wherever books are sold

DAVID QUAMMEN

Independent Publishers Since 1985