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Abstract

Integer lattices are important theoretical landscapes for studying the consequences of dispersal and spatial population structure,

but convenient dispersal kernels able to represent important features of dispersal in nature have been lacking for lattices. Because

leptokurtic (centrally peaked and long-tailed) kernels are common in nature and have important effects in models, of particular

interest are families of dispersal kernels in which the degree of leptokurtosis can be varied parametrically. Here we develop families

of kernels on integer lattices with several important properties. The degree of leptokurtosis can be varied parametrically from near 0

(the Gaussian value) to infinity. These kernels are all asymptotically radially symmetric. (Exact radial symmetry is impossible on

lattices except in one dimension.) They have separate parameters for shape and scale, and their lower order moments and Fourier

transforms are given by simple formulae. In most cases, the kernel families that we develop are closed under convolution so that

multiple steps of a kernel remain within the same family. Included in these families are kernels with asymptotic power function tails,

which have provided good fits to some observations from nature. These kernel families are constructed by randomizing convolutions

of stepping-stone kernels and have interpretations in terms of population heterogeneity and heterogeneous physical processes.

r 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Spatially explicit models are of increasing importance
in population biology, especially in ecology where such
models are relatively recent (Dieckmann et al., 2000).
Key questions concern the patterning of organisms in
space (Levin, 1992), the relationship of the patterning of
organisms to patterns in the environment (Rough-
garden, 1978), and the rate and pattern of spread of a
species or allele across a landscape (Kinezaki et al.,
2003; Lewis and Pacala, 2000). How organisms become
patterned in space is of intrinsic interest (Klausmeier,
1999; Levin, 1992), but such patterns may also be used
to draw conclusions about underlying processes. For
e front matter r 2005 Elsevier Inc. All rights reserved.
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example, spatial patterns may help distinguish different
mechanisms of species coexistence (Bolker et al., 2003),
or indicate dispersal distances (Ouborg et al., 1999).
Spatial patterns potentially affect other processes. They
may change the nature and outcomes of species
interactions (Kareiva and Wennergren, 1995), poten-
tially promoting coexistence of competitors (Bolker and
Pacala, 1999; Hassell et al., 1994; Murrell and Law,
2003; Snyder and Chesson, 2003) or stabilizing host–
parasitoid and predator–prey relationships (Briggs and
Hoopes, 2004; Comins et al., 1992; De Roos et al.,
1998).
Spatially explicit models inevitably require the use of

functions called kernels, which describe dispersal in
space (Snyder and Chesson, 2003) or represent interac-
tions between individuals as functions of their distance
apart (Bolker and Pacala, 1999; Snyder and Chesson,
2004). Our concern here is with dispersal kernels. In
discrete time, a dispersal kernel defines for each spatial
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location the probability distribution of places dispersed
from that location in one unit of time. The variance of
this distribution defines the spatial scale of dispersal, but
also important is kurtosis, which reflects the shape of the
distribution. In nature, leptokurtosis is common, that is,
dispersal kernels are often observed to have a sharp
peak at the point of origin and a long tail. They are thus
far from the Gaussian (normal) distributions often used
in modeling. Of most importance, leptokurtosis has
been shown to greatly increase the rate of spread of an
invading organism or allele, and has been hypothesized
to explain the faster than expected rates of spread
sometimes found in nature (Cain et al., 1998; Kot et al.,
1996; Lewis and Pacala, 2000). Moreover, recent
modeling studies show that dispersal kurtosis may have
important repercussions for the dynamics of spatial
host–parasitoid interactions (Wilson et al., 1999) and
disease (Brown and Bolker, 2004). Finally, leptokurtic
models are of value in estimating dispersal character-
istics from field data, giving greater precision when
kurtosis is appropriately modeled (Clark et al., 1999). It
is only recently, however, that suitable families of
dispersal kernels, allowing broad ranges of kurtosis,
have been in use. Hence, investigations of the full
realistic range of kurtosis, including the extremes
sometimes observed, are just beginning. This article
facilitates this endeavor by providing new families of
dispersal kernels for discrete space and time that allow
exploration of the effects of kurtosis ranging from the
Gaussian value to infinity.
In spatially explicit models, space can be represented

as discrete or continuous, but integer lattices in one or
two dimensions have advantages for many problems
(Snyder and Chesson, 2003; Thomson and Ellner, 2003).
However, models of dispersal on integer lattices are not
well developed. The earliest integer-lattice models use
stepping-stone dispersal: in one unit of time, only
nearest neighbors of a lattice point are accessible
(Kimura and Weiss, 1964; Malécot, 1969). Such models
are useful for qualitative assessment of the effects of
localized dispersal (Barton et al., 2002). Quantitative
effects, and especially questions about the shape of the
dispersal kernel, as discussed above, demand more
sophisticated treatments. However, there has been very
little development in the statistical literature of suitable
probability distributions on integer lattices. Indeed,
there is a need for parametric families of probability
distributions on integer lattices in which the degree of
kurtosis is a parameter so that the effects of leptokurtic
dispersal can be studied in models.
Most discrete probability distributions of concern to

statisticians are restricted to the nonnegative integers
(Johnson et al., 1992). As a consequence, dispersal is
often modeled by discretizing distributions on contin-
uous Euclidean space for use on a lattice (e.g. Higgins
and Richardson, 1999; Ibrahim et al., 1996). However,
theory for the original continuous distributions does not
apply to discretizations. Indeed, such features as
convolutions, moments, and the relationships between
them, transfer at best approximately to discretizations,
and may be especially misleading for cases where the
median dispersal distance is only a few lattice points.
Similar difficulties arise with the common approach of
using a probability distribution for distance dispersed to
define the probabilities of dispersing to multidimen-
sional lattice points regardless of direction (e.g. Levin
and Kerster, 1975; Rousset, 2000).
We develop here a class of integer lattice distributions

with a special focus on their applications to modeling
dispersal. These distributions are designed to be
simulated readily, with properties that are easy to define
and control. We provide several families of such
distributions defining dispersal kernels in any number
of dimensions, although serious applications in popula-
tion biology rarely go beyond two. These families are
defined by time randomizations of convolutions of
stepping stone kernels. A counterpart of this technique
was recently applied by Yamamura (2002) to create a
class of leptokurtic distributions for modeling dispersal
in continuous space. For the most part, the families that
we derive preserve convolutions, and so multiple
dispersal steps of a kernel remain in the same family.
The moments of these kernels have an elegant simplicity
of interpretation, and their Fourier transforms have
compact forms. Calculation of the probabilities for these
distributions, i.e. calculation of the kernel itself, is often
more complex, but robust numerical techniques are
available in general. We build these distributions from
stepping-stone distributions as the basic elements. In
general, however, they have infinite tails and their
properties vary from discrete approximation of multi-
variate normality to strong leptokurtosis suitable for
representing rare long-distance dispersal.
To facilitate understanding, a list of notation is

provided as Table 1.
2. Foundations

Given a probability mass function KðxÞ ¼ PðX ¼ xÞ;
for some random variable X ¼ ðX 1;X 2; . . . ;X d Þ on the
d-dimensional integer lattice ðZd ;x 2 Zd Þ; a dispersal
kernel can be defined as the function of two variables
Kðy� xÞ: This function gives the probability of disper-
sing in one unit of time from lattice point x to lattice
point y: Such kernels are translationally invariant
because the dispersal probabilities depend only on the
displacement y� x; not separately on the point of origin
x: Because of the direct relationship between KðxÞ and
the kernel Kðy� xÞ derived from it, we refer to KðxÞ as
the kernel. Kernels are commonly chosen with further
symmetry properties. In continuous space, radially
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symmetric kernels are used so that all directions of
movement are equally likely. On an integer lattice,
however, exact radial symmetry is impossible because
the lattice itself has restricted symmetry: only multiples
of right angle rotations of the lattice are invariant.
However, one can seek forms of asymptotic invariance
where the probability distribution of the dispersal angle
approaches uniformity as the distance dispersed ap-
proaches infinity.
In continuous space, a multivariate Gaussian dis-

tribution with components X 1;X 2; . . . ;X d independent
and identically distributed is radially symmetric, and is
the only radially symmetric distribution with indepen-
dent components (Fang et al., 1990; Feller, 1971). Thus,
except for the Gaussian, radially symmetric kernels
cannot be obtained from statistically independent
component distributions. However, symmetric kernels
can be manufactured as averages (commonly called
mixtures) of Gaussian kernels with different variances
(Ibrahim et al., 1996; Yamamura, 2002). Such kernels
have higher kurtosis than Gaussian kernels (Nichols and
Hewitt, 1994), a useful property as most dispersal
kernels observed in nature are strongly leptokurtic. We
use an analogous technique to obtain dispersal kernels
on integer lattices with the property of long-range
symmetry.
The well-known normal approximation to the bino-

mial distribution suggests the binomial as an appro-
priate approximation to the Gaussian on the integers,
provided the n parameter of the binomial is large
enough. We use the binomial as our starting point. In d

dimensions, the separate coordinates can be indepen-
dent binomials, just as independent Gaussians as
coordinates yield d-dimensional Gaussian kernels. For
use as a kernel, the binomial needs to be centered at
zero; and for it to be symmetric on the integers, the
usual parameter p of the binomial must equal 1

2
: Thus, if

X is a random variable representing dispersal from zero
on the integers, the binomial that we use is defined by
the formula

Bn;1ðxÞ ¼ PðX ¼ xÞ ¼

n

n þ x

2

0
@

1
A 1

2

� �n

,

x ¼ �n; �n þ 2; . . . ; n � 2; n. ð1Þ

This kernel describes n steps of the stepping-stone
kernel, the kernel allowing movement one unit to the
right or left, each with probability 1

2
: In terms of random

variables, this means that X is a sum of n independent
stepping-stone steps:

X ¼
Xn

i¼1

Si, (2)

where the random variables Si are the stepping-stone
steps. These steps are independent and identically
distributed binary random variables with

PðSi ¼ �1Þ ¼ PðSi ¼ 1Þ ¼ 1
2
. (3)

Thus, the kernel Bn;1ðxÞ; which we think of as defining
one step on the temporal scale of interest, can be
decomposed into n steps on some finer temporal scale.
For d dimensions, we define the kernel

Bn;dðxÞ ¼
Yd

i¼1

Bn;1ðxiÞ. (4)

The random vector X representing one step in d

dimensions has coordinates X 1;X 2; . . . ;X d ; where the
X i are independent with distribution Bn;1: Formula (2)
still applies but with Si replaced by the vector Si having
the components S1i;S2i; . . . ;Sdi; the independent step-
ping-stone steps for each dimension.
These binomial kernels have some peculiarities, which

mean that they are not themselves satisfactory models.
Note first that from formula (1) that n þ X i must be
even, i.e., every other integer is inaccessible in a single
step with these kernels. Second, they have finite ranges
ðjX ijpnÞ though an unbounded range for dispersal is
most natural. Third, these kernels have lower kurtosis
than the Gaussian, although not by much. For a
random variable centered on zero, kurtosis is measured
as

k ¼
E½X 4

i 	

ðE½X 2
i 	Þ

2
� 3, (5)

which is the fourth cumulant (Johnson et al., 1992)
rescaled to unit variance. A Gaussian has k ¼ 0; but for
these binomials k ¼ �2=n (Johnson et al., 1992).
The first two of these problems with binomials can be

eliminated and the third ameliorated first by forming the
following Poisson kernel:

Pm;d ðxÞ ¼
X1
n¼0

e�mmn

n!
Bn;d ðxÞ, (6)

which is a mixture of binomial kernels over the Poisson
distribution with mean m: In terms of random variables,
a step X now has the representation

X ¼
XN

i¼1

Si, (7)

where each Si remains a d-dimensional stepping-stone
step, but the number of these steps is a Poisson random
variable N with mean m: In one dimension, this kernel is
positive on the entire integer lattice, with maximum at
zero and, as we shall see later, k ¼ 1=E½N	ð¼ 1=mÞ: It is
thus slightly leptokurtic. In one dimension, this Poisson
kernel has an explicit representation in terms of
modified Bessel functions

Pm;1ðxÞ ¼ e�mIxðmÞ (8)

(Feller, 1971, p. 59).
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Table 1

Notation

a Function of Sichel parameters equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 þ 2ox

p
:

Also used for stable distribution shape parameter

Bn;d ðxÞ Binomial kernel, Eq. (4)

cosðtÞ Product of cosines:
Qd

l¼1 cosðtlÞ; Eq. (16)
g Sichel shape parameter 2 ð�1;1Þ

d Dimension of the space

f U ðuÞ Probability density function of U

k Convolution parameter

k Kurtosis, Eq. (5)

KðxÞ Dispersal kernel specifying the probability of moving

from 0 to x in one step
~KðtÞ Fourier transform (characteristic function) of K, with

argument t, Eq. (13)

Kn Modified Bessel function of the third kind of degree n
m Common mean of N and U, and kernel scale parameter

N Random variable giving the number stepping stone steps

making up X or Z

Pm;d ðxÞ Poisson kernel, Eq. (6)

pN ðyÞ Probability generating function for N, Eq. (18)

Si One d-dimensional stepping-stone step on the diamond

lattice

S�i One d-dimensional stepping-stone step on the

rectangular lattice

U Random variable specifying the conditional mean of N,

Eq. (12)

U ðk;mÞ Generic parametric family of U variables where k is the

number of convolutions of base-level random variable

U ð1;1Þ: m is a scale parameter equal to the mean when it

exists

j2
ð1Þ

Squared coefficient of variation of U ð1;1Þ

j2
N

Squared coefficient of variation of N

X Random vector corresponding to one step of the general

kernel K, on a diamond lattice

x Scale parameter for Sichel and stable Poisson mixture

kernels

cU ðlÞ Laplace transform of U, Eq. (20)

cð1Þ Laplace transform for U ð1;1Þ

Z Random vector corresponding to one step of the kernel

KZ on the rectangular lattice

o Sichel shape parameter 2 ð0;1Þ
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In more than one dimension, this kernel is not positive
on the entire integer lattice because each coordinate of X
is odd or even depending on whether N is odd or even,
and so no realization of X can have a mixture of odd
and even coordinates. In two dimensions (the only
multidimensional case of practical importance), this
means that half the integer lattice is missed, viz all those
points where one coordinate is even, and one odd. The
lattice represented by values that X can take consists of
integer combinations of the basis vectors ð1; 1Þ0 and
ð�1; 1Þ0: Thus, it is a diamond lattice obtained from the
integer lattice by rotation by 45� and dilation so that the
minimum spacing of lattice points is

ffiffiffi
2

p
: This diamond

lattice may be just as convenient for modeling purposes
as the usual integer lattice because it is just a different
representation of the same object. Alternatively, X can
be rotated and contracted to give a random vector Z
defining a positive kernel on the entire integer lattice by
the transformation

Z ¼

1
2
½X 1 þ X 2	

1
2
½X 2 � X 1	

 !
. (9)

This random vector also has the representation

Z ¼
XN

i¼1

S�i , (10)

where S�i is a two-dimensional stepping-stone step
defined as a random choice from the vectors
ð1; 0Þ0; ð0; 1Þ0; ð�1; 0Þ0; and ð0;�1Þ0: In contrast, Si is a
random choice from ð1; 1Þ0; ð�1; 1Þ0; ð�1;�1Þ0; and
ð1;�1Þ0: The very simplest case of Z; with N � 1; and
hence one stepping-stone step, is nearest neighbor
dispersal in two dimensions.
The kernel defined by Z is related to that defined by X

according to the relationship

KZ

z1

z2

 !
¼ K

z1 � z2

z1 þ z2

 !
. (11)

Thus, results derived for X are easily transformed into
results for Z: Theory development using X is simpler
than using Z because the coordinates of X are
conditionally independent given N ; while those of Z
are not. Numerical computation of the kernel itself is
also more simply approached using X: Hence, the
development here is in terms of X stating results for Z
that follow directly from this development.
So far, we have defined only the binomial and Poisson

kernels, but a variety of useful kernels is available by
making other choices for the distribution of N: The
Poisson kernel, being very similar to the Gaussian in
most properties, is at one end of realistic distributions
for modeling dispersal. In many instances, the Gaussian
is the standard of comparison against which the effects
of leptokurtosis may be assessed. Greater degrees of
leptokurtosis arise from distributions of N that have
higher variance for a given value of the mean than the
Poisson. A convenient family of distributions with this
property is the Poisson mixture distributions, i.e. those
distributions for which

PðN ¼ nÞ ¼ E
e�U Un

n!

� 
, (12)

where U is some nonnegative random variable. Natu-
rally, when U has a continuous distribution with a
probability density function f U ; the expectation (12) is
given by an integral—see Table 2. Poisson mixture
distributions include important classes of discrete
probability distributions on the nonnegative integers
such as the negative binomial, the Sichel distributions
(as discussed below), and many others (Johnson et al.,
1992). Before presenting these distributions, however,
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Table 2

Parametric families for the distribution of N

Distribution of N Probability mass function, Probability generating Squared coefficient

pn ¼ PðN ¼ nÞ function, pN ðyÞ of variation j2
N

Poisson mne�m

n!
emðy�1Þ 1

m

Negative binomial k þ n � 1

k � 1

� �
m
k

� �n

1þ
m
k

� ��n�k
1þ

m
k
ð1� yÞ

h i�k 1

k
þ
1

m

Sichel xn
ðo=aÞgþnKgþnðaÞ

n!KgðoÞ
;

Kgðo
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2xð1� yÞ=o

p
Þ

KgðoÞð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2xð1� yÞ=o

p
Þ
g

1

m
1þ

2xðgþ 1Þ

o

� 
� 1þ

x
m

� �2

where a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 þ 2ox

p

Infinitely divisible Poisson mixture R1
0 f U ðuÞ

une�u

n!
du cð1Þ

m
k
½1� y	

� �n ok j2
ð1Þ

k
þ
1

m

Stable Poisson mixture R1
0 f U ðuÞ

une�u

n!
du expf�k1�axað1� yÞag 1
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we derive the general form of the Fourier transform of
these kernels, showing how it is related to the transforms
of the distributions of N and U used to build these
kernels.
3. Fourier transforms

For analytical modeling purposes, one of the most
useful features of a kernel is its Fourier transform. The
Fourier transform is unique to a kernel and can be used
to calculate the kernel, as discussed below. However, the
Fourier transform is more useful than the kernel itself
when modeling population dynamics that are linear
(Lande, 1991), or approximately linear (Lande et al.,
1999; Roughgarden, 1977, 1978; Snyder and Chesson,
2003). For studies of invasions, the rate of spread can be
understood from the Fourier transform (expressed as
the moment generating function), even though popula-
tion dynamics are nonlinear locally in space (Clark et
al., 2001). The Fourier transform of a kernel K is defined
slightly differently by different authors, but we choose
the following definition

~KðtÞ ¼
X
x2Zd

KðxÞeit�x, (13)

where the argument t is the vector ðt1; t2; . . . ; tdÞ
0; the dot

ð�Þ means inner product, and i is
ffiffiffiffiffiffiffi
�1

p
: In the probability

literature, this Fourier transform is called the characteristic
function of the probability distribution K, or the random
variable X; and can be written as the expected value

~KðtÞ ¼ E½eit�X	, (14)
(Feller, 1971). Fourier transforms of kernels in the families
introduced here are especially easy to obtain. We begin
with the fact that the characteristic function of a stepping-
stone step in one dimension is, by (14),

E½eitjSjl 	 ¼ 1
2
ðeitj þ e�itj Þ ¼ cosðtjÞ. (15)

Independence of the components implies that the d-
dimensional characteristic function of a d-dimensional
stepping-stone step is

E½eit�Sj 	 ¼
Yd

l¼1

cosðtlÞ ¼
def

cosðtÞ, (16)

where the product of cosines in the center defines the
cosine of a d-dimensional argument on the right.
As the binomial kernel is the n-fold convolution of the

stepping-stone kernel, it follows that its Fourier trans-
form is ½cosðtÞ	n; according the standard properties of
Fourier transforms. To obtain the Fourier transform of
a kernel in a family defined by replacing n with the
random variable N, we use the conditional expectation
formula:

~KðtÞ ¼ EfE½eit�XjN	g

¼ E½cosðtÞN 	

¼ pNðcosðtÞÞ. ð17Þ

The function pN in this last step is the probability
generating function of N, which is defined in general as

pN ðyÞ ¼ E½yN
	 ¼

X1
n¼0

ynPðN ¼ nÞ. (18)
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The probability generating function is readily available
for most commonly used discrete distributions (e.g.
Johnson et al., 1992, and Table 2 above). The power
series representation (18) shows that the probability
generating function determines the probability distribu-
tion. For the Poisson distribution, the probability
generating function is expðmðy� 1ÞÞ (Johnson et al.,
1992), and so the characteristic function for the Poisson
kernel is

~Pm;dðtÞ ¼ emðcosðtÞ�1Þ. (19)

To obtain the probability generating function of N with
a Poisson mixture distribution, we need the Laplace
transform of U, which is defined as

cU ðlÞ ¼ E½e�lU 	 ¼

Z 1

0

f U ðuÞe
�lu du. (20)

The Laplace transform is the most common transform
used for analysis of nonnegative continuous random
variables and is readily available for common distribu-
tions (Johnson et al., 1994). Examples are given in
Table 2. To get the probability generating function of N

from the Laplace transform of U, we again use
conditional expectations to obtain

pN ðyÞ ¼ EfE½yN
jU 	g

¼ EfeUðy�1Þg

¼ cU ð1� yÞ, ð21Þ

where the second step uses the fact that N is Poisson
conditional on U with mean U.
We now use formula (21) to see that the general

formula for the Fourier transform of a Poisson mixture
kernel is

~KðtÞ ¼ cU ð1� cosðtÞÞ. (22)

Thus, we can go easily from the Laplace transform of a
nonnegative random variable U, with desirable proper-
ties, to the Fourier transform of the kernel generated by
it. In making this connection, we have used three
different sorts of transform. These transforms are all
variations on the characteristic function. Substituting y
for expðitÞ in the characteristic function gives the
probability generating function, and substituting �l
for it gives the Laplace transform. These are the most
common transforms in use for each of the different sorts
of distribution involved, viz, distributions taking both
positive and negative values, nonnegative integer values,
and positive continuous values.
For two-dimensional kernels defined by Z; the

representation (9) implies that cosðtÞ (i.e.
cosðt1Þ cosðt2ÞÞ is replaced by 1

2
ðcosðt1Þ þ cosðt2ÞÞ in each

of the formulae above. In particular,

~KZðtÞ ¼ pNð
1
2
½cosðt1Þ þ cosðt2Þ	Þ. (23)
For Poisson kernels, the exponential form of the
probability generating function pN means that this
characteristic function is the product of the character-
istic functions for each coordinate considered sepa-
rately. Thus, the coordinates of Z are statistically
independent in the Poisson case. Moreover, the dis-
tributions of the coordinates are Poisson kernels as are
the coordinate distributions of X: This fact means that
an alternative development of this kernel theory could
be based on conditional independence of the coordinates
of Z given U. However, the kernel in terms of X is much
more simply obtained numerically because the formulae
involve series rather than integrals.
The moment generating function, MðtÞ ¼ E½expðt � XÞ	;

of a kernel also appears in the literature on long distance
dispersal for some applications (Caswell et al., 2003; Kot
et al., 1996). This function is obtained by substituting �it

for t in the characteristic function. Note, however, that
although a strongly leptokurtic kernel need not have a
moment generating function (i.e. MðtÞ may be infinite
except for t ¼ 0), all kernels have characteristic functions
(Fourier transforms).
4. Distributions for N and U

We have just seen how a discrete distribution on the
nonnegative integers for N, or alternatively a positive
continuous distribution for U, yields a dispersal kernel.
Our task now is to choose N and U distributions that
confer desirable properties on the kernel. Because n

convolutions of a kernel represent n steps of that kernel,
interpretability of the family is aided if convolutions of a
kernel remain in the family. We also seek ways of
changing the spatial scale of dispersal without changing
the basic shape of the kernel. Finally, we seek the ability
to vary the shape of the kernel, especially the nature of
the tail, to be able to compare different degrees and
different sorts of leptokurtosis. We begin our develop-
ment by inquiring about how to create families that
preserve convolution.
The convolution of a kernel with itself is defined as

K�2ðxÞ ¼
X
y

Kðx� yÞKðyÞ, (24)

which defines the probability distribution for two steps
of the kernel K, i.e. the distribution of X1 þ X2; where
X1 and X2 are independent and have the same
distribution as X: Closure of a family under convolution
means that the kernel defining the outcome of multiple
steps is a member of the same family as the kernel for
one step, and therefore can be conveniently interpreted
in terms of parameter changes within that family. In
addition, the unit of time in which one step takes place is
often somewhat arbitrary in models, and so it would be
desirable if the family in use did not depend on the
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choice of time unit. Thus, a single step ought to be
expressible as a convolution of steps within the same
family so that it can be interpreted as the outcome of a
sequence of steps over shorter time units.
Our kernel construction, where one step is composed

of N steps of the stepping-stone kernel, means that these
convolution requirements for the kernel are convolution
requirements for the family to which N belongs: two
steps of the kernel are N1 þ N2 steps of the stepping-
stone kernel, where N1 and N2 are independent and
have the distribution of N. For a single step of the kernel
to be represented in terms of steps over shorter periods
of time, we require that for any k, N can always be
represented as a sum

N ¼ N1 þ N2 þ � � � þ Nk, (25)

where the Nj are independent and identically distrib-
uted, i.e. the distribution of N is a k-fold convolution of
some distribution with itself. This requirement on N

means that the distribution of N is by definition
infinitely divisible (Billingsley, 1986; Feller, 1971). If a
discrete random variable N ð1Þ has probability generating
function pð1Þ; the probability generating function of the
k-fold convolution of the distribution of N ð1Þ is

pðkÞðyÞ ¼ ½pð1ÞðyÞ	k. (26)

If the distribution of N ð1Þ is infinitely divisible, k can be
fractional, and then Eq. (26) defines an infinitely
divisible family of distributions for N where k is the
single parameter of the family. An infinitely divisible
family of kernels results when pðkÞ is substituted for pN

in the characteristic function (17) of the kernel.
Infinitely divisible distributions for N are easily

specified. They have probability generating functions
of the form

pðkÞðyÞ ¼ ekðp�ðyÞ�1Þ, (27)

where p� is the probability generating function of any
nonnegative discrete random variable (Johnson et al.,
1992). These distributions are the ‘‘generalized Poisson
distributions,’’ and for each probability generating
function p�; we obtain a one-parameter family of
kernels, with parameter k, where k simultaneously
affects both shape and scale, as we shall see below. To
obtain two-parameter families with one parameter
affecting the shape or kurtosis, and another the scale,
we choose a subset of generalized Poisson distributions,
the Poisson mixture distributions (Johnson et al., 1992).
With Poisson mixtures, infinite divisibility of N is

inherited from infinite divisibility of U. Many well-
known families of nonnegative continuous random
variables have the property of infinite divisibility. Given
an infinitely divisible random variable U ð1Þ with Laplace
transform cð1Þ; there is by definition a family of random
variables fU ðkÞ; k40g; with Laplace transforms fcðkÞg
satisfying the relationship

cðkÞðlÞ ¼ ½cð1ÞðlÞ	
k. (28)

By Eq. (21), this Laplace transform induces a one-
parameter infinitely divisible family fN ðkÞ; k40g for N,
with probability generating function pðkÞðyÞ ¼ cðkÞð1� yÞ:
However, as we shall see shortly, we can introduce a scale
parameter, and remove the scaling property of k by
choosing for the U family the random variables U ðk;mÞ ¼

mU ðkÞ=k:When the mean of U ðk;mÞ exists, it is independent
of k, and the family can be defined so that m ¼ E½U ðk;mÞ	:
Now U ðk;mÞ has the Laplace transform

cðk;mÞðlÞ ¼ cð1Þ

lm
k

� �� k

. (29)

The corresponding N family has probability generating
function

pðk;mÞðyÞ ¼ cð1Þ

m
k
ð1� yÞ

� �h ik

. (30)

The Fourier transform of the kernel becomes

~K ðk;mÞðtÞ ¼ cð1Þ

m
k
½1� cosðtÞ	

� �h ik

. (31)

With these families, both N and U have the same mean,
when it is finite. This common mean is mE½U ð1Þ	; which is
just m if U ð1Þ is chosen to have mean 1, for example by
replacing any candidate U ð1Þ with U ð1Þ=E½U ð1Þ	: Most
important, however, the common mean of N and U is
independent of k. When the mean exists, the law of large
numbers ensures that the spread of both U and N about
their mean decreases as k increases. The next section on
moments shows that the mean number of stepping-stone
steps, E½N	; determines the scale of X: The spread in the
number of steps about this mean, which is determined
by k, governs the shape of kernel. Thus, defining the
kernel family in terms of the random variables U ðk;mÞ

allows m and k to be interpreted as shape and scale
parameters of the kernel, at least in the case where the
mean of N is finite. Where this mean is infinite, for
example in models of extreme leptokurtosis, shape and
scale become difficult to separate, as we shall see below in
Section 4.3.
We name these kernels according the name of the

distribution of N, or U when N does not have a specific
name. We choose three pairs of families of infinitely
divisible U and N distributions for illustration and
which we believe can be valuable for applications.
4.1. Negative binomial kernels

In this family, U has a gamma distribution (Johnson
et al., 1994), which means that N is negative binomial
(Johnson et al., 1992). The base level U ð1Þ random
variable can be chosen to be exponential (a special case
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of the gamma) with mean 1, i.e.

PðU ð1Þ4uÞ ¼ e�u, (32)

and the parameter m; defined above, then corresponds to
the mean of U and N. The negative binomial prob-
abilities, and corresponding probability generating
function, are given in Table 2. The shape parameter k

is the usual negative binomial clumping parameter, of
common use in ecology to characterize the degree to
which negatively binomially distributed counts from
quadrats indicate spatial clumping of organisms (South-
wood and Henderson, 2000). The negative binomial
provides an archetypical two parameter family where
the parameters are the shape and scaling parameters, m
and k, discussed here. The U ðk;mÞ distribution is the
gamma distribution with mean m and shape parameter k:
Although the widely familiar negative binomial is

noted for its strong skew, which also means that it has
high variance for a given value of the mean, it has some
limitations from the point of view of modeling dispersal:
the tails of the distribution are bounded by a negative
exponential, implying the same property for the tails of
the dispersal kernel (Appendix B) and also that all
moments of the kernel are finite. Thus, the negative
binomial kernel may not be sufficiently leptokurtic for
some dispersal in nature, which appears not to have
exponentially bounded tails (Clark et al., 1999; Portnoy
and Willson, 1993), with most moments effectively
infinite.

4.2. Sichel kernels

For these kernels, the distribution of U is the
generalized inverse Gaussian distribution (Johnson et
al., 1994), which gives rise to distributions of N known
as Sichel distributions (Johnson et al., 1992). They are
more complicated than negative binomials, but allow a
very wide range of leptokurtosis. In particular, limiting
forms within this family do not have exponentially
bounded tails.
The density function of the generalized inverse

Gaussian can be written as

f U ðuÞ ¼
ug�1e�

1
2
oðx�1uþxu�1Þ

2xgKgðoÞ
, (33)

(Johnson et al., 1994) where the Kg is the modified
Bessel function of the third kind (Abramowitz and
Stegun, 1964; Johnson et al., 1992) defined implicitly
here by the fact that (33) must integrate to 1 over the
range 0 to 1: The parameters x and o are positive, and
g is an unrestricted real number. The parameter x is a
scale parameter, but is not equal to the mean. The mean
m; is instead given by the formula

m ¼ x
Kgþ1ðoÞ
KgðoÞ

. (34)
For fixed positive g; the limit of the generalized inverse
Gaussian as x ! 0; with o ¼ 2gx; is the gamma
distribution with mean 1 and shape parameter k ¼ g:
On the other hand, if g is negative and fixed, the limit as
x ! 1; with o ¼ 2jgj=x; is the distribution of the
reciprocal of a gamma with mean 1 and k ¼ �g: Thus,
for positive g in the limit as x ! 0; the Sichel kernels are
the negative binomial kernels. For negative g in the limit
as x ! 1 they are the Poisson reciprocal gamma kernels.
The reciprocal gamma has the property that its tails are
not exponentially bounded. They are instead asymptoti-
cally proportional to the power ug�1: The tails of N are
then asymptotically proportional to ng�1 and the tails of
the kernel are asymptotically proportional to jxj2g�1

(Appendix B). This power-law tail is also found in the
continuous-space analogue of this kernel, the t-distribu-
tion kernel that Clark et al. (1999) used to fit dispersal of
tree seeds. These t-distribution kernels are derived as
reciprocal gamma mixtures of the normal kernel, which
our Poisson kernel approximates on lattices.
Fig. 1 illustrates these Sichel kernels and their

convergence on the Poisson reciprocal gamma and
negative binomial limits. The variance and kurtosis are
the same for each kernel in the figure, and so the
differences between these kernels represent shape differ-
ences available within the Sichel family not captured by
the kurtosis measure k alone. From perspective of the
tails of the kernel (Fig. 1(b)) these shape differences are
manifest as different degrees of deviation from a negative
exponential. The kernels show a clear gradation in tail
behavior from nearly negative exponential to a power
function as one moves through these Sichel kernels from
the negative binomial to the Poisson reciprocal gamma.
One complication with the Sichel kernels is that

although U is infinitely divisible (Barndorff-Nielsen et
al., 1989), the kth convolutions of the distributions are
not known distributions except in the limiting gamma
case and the case where g ¼ �1

2
(the inverse Gaussian

distributions, Johnson et al., 1994). Thus, the prescrip-
tion above (formulae (29)–(31)) for generating two-
parameter families of kernels, preserving convolution,
will lead to kernels that are not Sichel kernels for ka1
except in the case g ¼ �1

2
; and in the negative binomial

limit. The new kernels might be called generalized Sichel
kernels. To use the formulae (29)–(31) to generate these
generalized Sichel kernels, cð1Þ is given as

cð1ÞðlÞ ¼
Kgðo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2xl=o

p
Þ

KgðoÞð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2xl=o

p
Þ
g (35)

with x ¼ KgðoÞ=Kgþ1ðoÞ so that m ¼ 1 in Eq. (34).
4.3. Stable kernels

The final kernels that we consider are generated by
distributions of U called stable distributions (Feller,
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Fig. 1. Sichel kernels converging on Poisson reciprocal gamma and

negative binomial limits. Kernel variance, m; and kurtosis, k; were fixed
at 2 and 6.5, respectively. The parameter o was varied through the

values 0.54, 0.47, 0.35, 0.2 and 0, with 0 corresponding to the Poisson-

reciprocal gamma (for go0) and negative binomial ðg40Þ: For each o
value there are two solutions for g (with a corresponding x value), for
the given m and k: The smaller (more negative) g solution is indicated

by the circles and solid lines. Diamonds and dashed lines correspond to

the larger solution. (a) KðxÞ for small x. (b) lnKðxÞ demonstrating tail

behavior. In both cases smaller values of o correspond to more

peripheral curves, with the outer-most curves being the limiting cases

for o ¼ 0; and the central-most curves having o ¼ 5:4:
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1971). These distributions are for modeling extreme
leptokurtosis because they all give infinite dispersal
variance. The Poisson reciprocal gamma kernels dis-
cussed above intersect with this family for the special
case g ¼ �1

2
: Indeed, this family provides an alternative

to the Poisson reciprocal gamma family for representing
extreme leptokurtosis. Its chief advantages are its very
simple Fourier transforms, and the property that
convolutions of the U distribution do remain in the
original family.
The Laplace transform of the base-level random

variable U ð1Þ can be taken as

cð1ÞðlÞ ¼ e�la , (36)
where the parameter a lies between 0 and 1. Feller (1971,
p. 583) shows that the density function is asymptotically
proportional to u�a�1: Coincidence with the Poisson
reciprocal gamma occurs for a ¼ �g ¼ 1

2: The Laplace
transform for the random variable U ðk;xÞ ¼ xU ðkÞ=k for
generating a kernel with scale parameter x and shape
(convolution) parameter k is

cðk;xÞ ¼ e�k1�axala , (37)

where the scale parameter is chosen as x instead of m to
emphasize that the mean of this distribution does not
exist, and so the scale parameter cannot be set equal to
the mean. Note that here k and x do not have separate
effects on this Laplace transform. They both multiply
la; but their effects are of different magnitude unless
a ¼ 1

2
: In contrast to cases where U has a finite mean, the

distribution of U does not become more highly
concentrated about a central value as k is increased.
Instead, it has an effect equivalent to increasing the scale
of U. This feature comes from the fact that, for cases of
infinite variance (Feller, 1971), stable distributions
replace the normal distribution in the central limit
theorem. Although k does not function as a shape
parameter for stable distribution kernels, the parameter
a is an independent shape parameter, governing the tails
of U : Presumably the tails of the kernel are asympto-
tically proportional to jxj�2a�1; but we have proved
this proposition only for the case a ¼ 1

2
where these

stable kernels coincide with reciprocal gamma kernels
(Appendix B).
5. Moments

The first few moments of the these new kernels are
easily derived in the cases where they are finite. The 2nth
order moments of X can be expressed in terms of the nth
and lower order moments of N: The 2nth order moments
of X are finite if and only if the nth order moments of N

are finite (Appendix C). In all cases, because the
stepping-stone kernel is symmetric about 0, the compo-
nents X i are symmetric about 0. Hence, E½X	 ¼ 0
whenever ENo1: Note also that E½XjN	 ¼ 0 because
the stepping-stone steps Si are independent of N, and
have zero mean.
The second order moments can be derived from

the conditional covariance formula, CovðX i;X jÞ ¼

EfCovðX i;X jjNÞg þ CovðE½X ijN	;E½X jjN	Þ; which here
reduces to CovðX i;X jÞ ¼ EfCovðX i;X jjNÞg: As Sij has
variance 1, and CovðSik;SjlÞ equals zero whenever iaj

or kal; it follows that CovðX i;X jjNÞ ¼ 0 for iaj; but
V ðX ijNÞ ¼ CovðX i;X ijNÞ ¼ N: Thus,

CovðX i;XjÞ ¼ 0; iaj (38)
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and

V ðX iÞ ¼ E½N	. (39)

That the covariance between components of X should be
zero is a minimal expectation from a distribution that
has properties of radial symmetry. Symmetry through
right angle rotations guarantees this outcome if the
moments exist. Eq. (39) for the variance means that
spread of the distribution is determined by the mean of
N. If we define R as the Euclidean distance dispersed
ðR ¼ jXjÞ; then because E½Xi	 ¼ 0; Eq. (39) implies that,
for dimension d,

E½R2	 ¼ dE½N	. (40)

In particular, the root mean square distance dispersed

ð
ffiffiffiffiffiffiffiffiffiffiffiffi
E½R2	

p
Þ is

ffiffiffiffiffiffiffiffiffiffiffiffiffi
dE½N	

p
: Thus, we can think of E½N	 as

controlling dispersal distance in this sense of root mean
square. We can think of this as the scale of dispersal.
Thus, the parameter m (¼ E½N	 ¼ E½U 	; when finite), in
the kernel families defined here, is a scale parameter.
The symmetry of these distributions means that third

moments, when they exist, are all zero. The fourth
moments of the components of X can be evaluated
using the conditional expectation formula E½X 4

i 	 ¼

EfE½X 4
i jN	g; noting that

E½X 4
i jN	 ¼ E

XN

j¼1

Sij

 !4
������N

2
4

3
5. (41)

This conditional expectation is just the fourth central
moment of the binomial (Johnson et al., 1992), which is
here equal to 3N2 � 2N; and is also given by the
recurrence relation (C.4) of Appendix C. Taking the
expectation of this conditional expectation, and using
the relationship E½N2	 ¼ V ðNÞ þ ðE½N	Þ

2; we see that

E½X 4
i 	 ¼ 3V ðNÞ þ 3ðE½N	Þ

2
� 2E½N	. (42)

It follows that the kurtosis coefficient k (expression (5)) is

k ¼ 3j2
N �

2

E½N	
, (43)

where jN is the coefficient of variation of N, i.e. the ratio
of the standard deviation of N to its mean.
The second part of this expression, �2=E½N	; is the

kurtosis of the binomial kernel. Thus, the kurtosis of
our general kernel exceeds that of the binomial kernel
according to the spread of the distribution of N, as
measured by its coefficient of variation. This outcome
makes intuitive sense because high variation in the
number of stepping-stone steps means that both small
and large values of N are likely, with small values
contributing to the peak in the distribution of X near
zero, and large values of N fattening the tails by
allowing X to take large values.
In the case of the Poisson, j2

N ¼ 1=E½N	; and so k is
1=E½N	 ¼ 1=m; as stated earlier. For infinitely divisible
Poisson mixture families, j2
N ¼ j2

ð1Þ=k þ 1=m; where j2
ð1Þ

is the coefficient of variation of U ð1Þ: Thus, in these
families,

k ¼
3j2

ð1Þ

k
þ
1

m
. (44)

Except when the scale parameter m is small, this
expression will be dominated by the first term involving
k: Thus, we can see that k functions as a shape
parameter. Is inevitable, however, that scale will also
have a role in shape because the distribution is discrete.
If m is small, this discreteness is pronounced, but for m
large, the kernel approximates a continuous function.
We can think of k as controlling shape beyond that
accounted for the discreteness of the kernel and a
Poisson level of variation in N.
For multidimensional distributions, Mardia (1970)

has suggested a measure of kurtosis that combines the
univariate kurtosis measure k above with the covariance
between X 2

i and X 2
j divided by the product of the

variances, for iaj: However, CovðX 2
i ;X

2
j Þ contains

separate information of value too. If the components
were independent, as they are for the binomial, this
covariance would be zero. A nonzero value, however,
reflects the statistical dependence induced between the
coordinates by the randomness in N, the number of
stepping-stone steps in an X step. The magnitude of N

influences the magnitudes of X 2
i and X 2

j and induces
covariance between them, even though the unsquared
coordinates, X i and X j ; which have direction as well as
magnitude, are uncorrelated. Thus, CovðX 2

i ;X
2
j Þ is an

important measure of deviation from a Gaussian kernel.
To obtain the covariance, we first evaluate the mixed

moment E½X 2
i X 2

j 	 using conditional expectations, noting
that, given N; the components are independent. Thus,

E½X 2
i X 2

j 	 ¼ EfE½X 2
i X 2

j jN	g

¼ EfE½X 2
i jN	E½X 2

j jN	g

¼ E½N2	, ð45Þ

where, in the last step, N is the conditional variance of a
component, as noted above. Now CovðX 2

i ;X
2
j Þ ¼

E½X 2
i X 2

j 	 � E½X 2
i 	E½X 2

j 	; and E½N2	 ¼ V ðNÞ þ ðE½N	Þ
2:

Thus, we see that

CovðX 2
i ;X

2
j Þ ¼ V ðNÞ. (46)

Making this measure independent of the scale, so that its
magnitude is more interpretable, we obtain the measure

CovðX 2
i ;X

2
j Þ

V ðX iÞV ðX jÞ
¼ j2

N . (47)

Thus, we see that the coefficient of variation of N arises
here as well. This measure shows that whenever there is
any variance in N, the components of X are not
independent, even though they are uncorrelated. More-
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over, the degree of this dependence as measured by (47)
is closely related to the unvariate kurtosis k of any
component. In case of the Poisson kernel, j2

N ¼ 1=m ¼ k
and so we see that for large m; this dependence, along
with univariate kurtosis, k; is weak. For most of the
other kernels presented here, however, there is strong
dependence between components.
In two-dimensions, the results here for X are readily

translated into results for Z by means of formula (9). As
formula (9) is a rotation followed by a contraction byffiffiffi
2

p
; EjZj2 ¼ 1

2
EjXj2 ¼ E½N	; and therefore

V ðZiÞ ¼
1
2

E½N	. (48)

Combining the kurtosis calculation (43) with the relative
covariance (47) leads to the kurtosis for Z of

kZ ¼ 3j2
N �

1

E½N	
, (49)

which is slightly larger than the kurtosis of X: Mardia’s
(1970) multivariate kurtosis is invariant under rotation,
and for d ¼ 2 is a linear function of the sum of the
relative covariance (47) and k: Thus, the relative
covariance for Z must counterbalance the increase in k
to give

CovðZ2
i ;Z

2
j Þ

V ðZiÞV ðZjÞ
¼ j2

N �
1

E½N	
. (50)

These results demonstrate that these kernels do have
some rotational asymmetry through 45�; but that
asymmetry will be small for modest mean numbers of
steps, E½N	: For strongly leptokurtic kernels, this small
asymmetry will be swamped by the symmetric contribu-
tion of j2

N : As remarked earlier, exact rotational
symmetry is impossible on the integer lattice, and so
the small degrees of asymmetry here indicate success
rather than failure of our kernel construction. For
Poisson kernels, the covariance (50) is zero, as it should
be because, as we noted from the characteristic function,
the coordinates of Z are independent in the Poisson
case. This compares well with the slight dependence
observed for the Poisson X:
6. Formulae for calculating the probabilities

The actual probabilities for a kernel are needed for
various numerical calculations, for example finding
expected values of nonlinear functions that are not
polynomials, exponential or trigonometric functions.
However, to use these kernels for simulation, the
probabilities are not needed. Instead one generates
values of X; by generating values of N, and adding up N

independently generated values of the individual step-
ping-stone steps, Si: Some potential distributions for N

(e.g. negative binomial) are included in standard
simulation packages. Otherwise, the number of steps,
N, would be generated by first generating U, and
substituting U as the mean in a Poisson random number
generator. If a given simulation package does not
include a random number generator for the particular
U distribution needed, then acceptance-rejection meth-
ods might be used (Johnson et al., 1994).
Probabilities can be obtained from the Fourier

transform, ~KðtÞ ¼ pN ðcosðtÞÞ; by using the inverse Four-
ier transform:

KðxÞ ¼
1

ð2pÞd

Z
½�p;p	d

pN ðcosðtÞÞe
�it�x dt

¼
1

ð2pÞd

Z
½�p;p	d

pNðcosðtÞÞ
Yd

j¼1

cosðtjxjÞ dt, ð51Þ

where the last step uses the fact that cosðtÞ; and hence
pN ðcosðtÞÞ; is an even function of each component of t:
The probabilities for these kernels can be obtained by
standard numerical procedures. Formula (51) might also
yield closed-form solutions, but at the present time we
are unaware of any for these families of kernels.
An alternative to Fourier inversion is direct calcula-

tion of the probabilities by averaging the binomial
kernel (4) over the distribution of N:

KðxÞ ¼
X1
n¼0

Bn;dðxÞPðN ¼ nÞ, (52)

which in the one-dimensional case becomes

KðxÞ ¼
X n

1
2
½n � x	

 !
1

2

� �n

PðN ¼ nÞ

where the sum is over nXjxj; for even values of n � x:
On making the substitution n ¼ 2m þ jxj; this formula
becomes

KðxÞ ¼
X1
m¼0

2m þ jxj

m

� �
1

2

� �2mþjxj

PðN ¼ 2m þ jxjÞ.

(53)

We have found the most difficult problem in the
application of this formula to be the calculation of the
summand to sufficient accuracy for very large m, which
is needed in highly leptokurtic cases. However, such
numerical problems are surmountable, and specific
procedures for calculations are outlined in Appendix D.
7. Discussion

Because measured dispersal in nature often deviates
markedly from Gaussian, families of dispersal kernels
that allow various departures from the Gaussian case
are needed for spatial population studies. Such families
of kernels are available for continuous space (Clark
et al., 1999; Yamamura, 2002). However, models where
populations are distributed on integer lattices have an
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important theoretical role, and so families of dispersal
kernels for integer lattices, which we provide here, are
needed too.
The particular technique that we use, where a random

number of steps of one kernel converts it into another,
has also been exploited implicitly by Clark et al. (1999)
and explicitly by Yamamura (2002) in their construc-
tions of kernels for continuous space. Our negative
binomial kernels are the discrete counterpart of the
kernels of Yamamura (2002), which involve gamma
distributed step duration (the continuous-time counter-
part of the number of steps) in a Gaussian diffusion
process. On the other hand, Clark et al. (1999) in effect
use a reciprocal of a gamma for step duration in the
same Gaussian diffusion process to obtain t-distribution
kernels that have asymptotic power function tails, a
feature that describes well the observed dispersal of
many plant seeds (Clark et al., 1999; Portnoy and
Willson, 1993).
The t-distribution kernels of Clark et al. (1999)

have been especially useful in modeling dispersal of
seeds of forest trees. They include kernels with
extreme leptokurtosis, but Gaussian kernels occur as a
limiting case. We have proved here that our Poisson
reciprocal gamma kernels have the same asymptotic tail
properties as the continuous kernels of Clark et al.
(1999). The Poisson reciprocal gamma kernels are a
limiting case of the Sichel kernels, which include also the
negative binomial kernels as another limiting case.
These Poisson reciprocal gamma kernels are thus part
of a large flexible family. However, the kernels
constructed here appear all to have either asymptotically
negative exponential tails, or asymptotic power function
tails. These characteristics ultimately derive from the
tail properties of the distribution of U, which is used to
generate the N distribution. Some dispersal studies
have used kernels with tails that are negative exponen-
tials of powers (e.g. Brown and Bolker, 2004), which
are not covered by the families explicitly considered
here. However, a Weibull distribution (Johnson
et al., 1994), which does have an asymptotically
exponential power tail, might be chosen for U. The
results here lead us to speculate that the tails of the
resulting dispersal kernel will also have asymptotically
exponential power tails.
By randomizing the number of steps in a simpler

kernel, these kernel constructions potentially have
biological or physical interpretations. For example, a
population will be heterogeneous in the extent to which
different individuals are prone to dispersal. Each
individual might have essentially a Gaussian dispersal
kernel, with the scale of dispersal varying from
individual to individual, and corresponding to different
numbers of steps of a kernel with unit scale. In our
construction, a natural interpretation is that each
individual has its own Poisson kernel, with its own
value of U defining its variance. Averaging the Poisson
kernels over the distribution of U then gives the kernel
at the population level. However, with this particular
interpretation, convolutions of the kernel cannot repre-
sent multiple steps of the same individual because they
would not be statistically independent. Either a single
step should represent dispersal over the life of the
individual, or dependence over time should be taken
into account in modeling the effects of multiple steps
(Chesson, 1978).
An alternative interpretation is that the value of U

represents a chance interaction between an individual
and physical dispersal processes or biological vectors
(Clark et al., 1999; Higgins and Richardson, 1999). For
example, a seed that is released from a tree on a windy
day will tend to be dispersed further than a seed released
on a calm day, or a fruit discovered by a monkey near
sunset is likely to have its seeds defecated by the monkey
nearer the point at which it was found than the seeds
of a fruit consumed earlier in the day (Chapman and
Russo, in press). These explanations are all nonadap-
tive explanations. However, it has been suggested also
that leptokurtic dispersal kernels might be favored by
natural selection in landscapes with positive spatial
autocorrelation in habitat favorability (Hovestadt et al.,
2001).
The Sichel family of kernels developed here provides a

highly flexible family with potentially broad application
to modeling dispersal. Its main disadvantage is its
relatively complex Fourier transform. In cases where
tails are exponentially bounded, the simpler negative
binomial limits of the Sichels might be preferred over
general Sichel kernels, and for extreme leptokurtosis, the
stable kernels provide an alternative to Sichels with their
very simple Fourier transforms.
The Fourier transforms and moments of these kernels

are in general the simplest features to determine.
Fortunately, these features are prominent in many
applications. Direct estimation of the moment generat-
ing function, a variant of the characteristic function,
has been proposed (Clark et al., 2001) and put into
practice (Caswell et al., 2003). Moments, and the
relationships between the moments of N and the
moments of the kernel, are particularly valuable in
characterizing the properties of these kernels as dis-
cussed here, while the Fourier transform and the
moment generating functions have proved most useful
in modeling. The actual values, KðxÞ; of the kernel itself
are in general more difficult to obtain than these other
features, and require numerical methods. However, the
formulae for them are straightforward, and the experi-
ence discussed in Appendix D has shown that relatively
simple procedures can overcome numerical difficulties.
Simulating dispersal with these kernels is a straightfor-
ward matter of generating random numbers of stepping
stone steps.
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Appendix A. Long range symmetry

The Poisson kernel satisfies two distinct forms of
long-distance radial symmetry. A Poisson distribution
with mean m can be written as an independent sum of m
Poisson distributions of mean 1, if m is an integer, and so
the Poisson kernel of variance m can be represented as
the m-fold convolution of Poisson kernels of mean 1.
From the central limit theorem, the distribution of
X=

ffiffiffi
m

p
converges on the spherical Gaussian distribution

with variance 1 for large m: Thus, if A is any compact set
in d-dimensional space, and H is an orthogonal matrix,
then PðX=

ffiffiffi
m

p
2 HAÞ is asymptotically independent of H

for large m: A different form of asymptotic radial
symmetry applies to the tails, and it holds for all values
of E½N	: Thus, we keep m fixed. Focusing on formula
(52), we note that for large x;KðxÞ is increasingly
dominated by binomial contributions with large num-
bers of steps. The central limit theorem implies that
these binomial contributions converge on the spherical
multivariate normal, which is radially symmetric. Thus,
we see that the tails of the Poisson kernel, and indeed
any other kernel in which the distribution of N is
unbounded, must approach radial symmetry in its tails.
Appendix B. Tail relationships

To study the behavior of the tails of dispersal kernels,
we shall consider only the univariate case ðd ¼ 1Þ:
However, the marginal distributions of the components
of X are the same for all d, and the radial symmetry
properties of the kernel (Appendix A) mean that the tail
behavior of the marginal distributions is indicative of
tail behavior in general. The Pascal’s triangle represen-
tation of binomial coefficients implies that the binomial
kernel, Bn;1ðxÞ; is monotone decreasing in jxj: Because
averages of monotone decreasing functions are mono-
tone decreasing, the kernel families presented here all
have this same property.
It is not difficult to see that if a probability

distribution is discrete, or is continuous and has
asymptotically monotonic tails, then its moment gen-
erating function is finite in an open neighborhood of
zero if and only if its tails are asymptotically bounded by
a negative exponential. The relationships between
various distributional transforms of X, N, and U given
in the section on Fourier transforms imply that the
moment generating functions of X, N, and U satisfy the
following identities

MX ðtÞ ¼ MN ðlnðcoshðtÞÞÞ ¼ MU ðcoshðtÞ � 1Þ. (B.1)

Thus, finiteness of any of these in an open neighborhood
of zero implies finiteness of the others. This means that
asymptotic exponential boundedness of the tails of N or
U is necessary and sufficient for asymptotic exponential
boundedness of the tails of X. This result means that the
negative binomial kernel inherits exponentially bounded
tails from the gamma distribution for U, and the Sichel
kernels also inherit this property from the generalized
inverse Gaussian, except in the limit when the general-
ized inverse Gaussian becomes the reciprocal gamma.
In the case of a reciprocal gamma distribution, the

tails of U are asymptotically proportional to the power
ug�1; where g is negative. We now show that the tail of
KðxÞ is asymptotically proportional to jxj2g�1: We begin
by noting from (33) that the modified Bessel function
KnðoÞ can be defined by the formula

KnðoÞ ¼
1

2

Z 1

0

un�1e�
1
2
oðu�1þuÞ du (B.2)

for o40 and all real n: Change of variable also provides
the integral formulaZ 1

0

un�1e�
1
2
ðau�1þbuÞ du ¼ 2

a

b

� �n=2
Knð

ffiffiffiffiffi
ab

p
Þ. (B.3)

From (B.2) we deduce the asymptotic formula

KnðoÞ� 1
2
ð1
2
oÞ�nGðnÞ, (B.4)

where � means that the ratio of the LHS to RHS
approaches 1 as n approaches infinity. Comparison of
(B.2) to the integral formula defining the gamma
function immediately establishes the RHS of (B.4) as a
strict upper bound of the LHS. Truncating the integral
at an arbitrary positive value above zero can be used to
establish adequate lower error bounds on (B.4) sufficient
for rigorous demonstration of the result whose proof we
outline here.
The density function of the reciprocal gamma is

x�g

Gð�gÞ
ug�1e�xu�1 , (B.5)

where the shape parameter g is negative and x is a
positive scale parameter. Using the fact that all Poisson
mixture kernels can be obtained by averaging the
Poisson kernel PU ;1ðxÞ ¼ e�U I jxjðUÞ (Eq. (8)), over the
distribution of U, we see that

KðxÞ ¼
x�g

Gð�gÞ

Z 1

0

e�uI jxjðuÞu
g�1e�xu�1 du. (B.6)
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Now the modified Bessel function I jxjðuÞ is given by the
integral formula

I jxjðuÞ ¼
ð1
2
uÞjxjffiffiffi

p
p

Gðjxj þ 1
2
Þ

Z 1

�1

ð1� t2Þjxj�
1
2eut dt

(Abramowitz and Stegun, 1964, formula 9.6.16). Sub-
stituting in (B.6) and changing the order of the
integration gives the expression

KðxÞ ¼
x�g

ð1
2
Þ
jxjffiffiffi

p
p

Gð�gÞGðjxj þ 1
2
Þ

Z 1

�1

ð1� t2Þjxj�
1
2

�

Z 1

0

ujxjþg�1e�ð1�tÞu�x=u du dt. ðB:7Þ

Using the integral formula (B.3) for the inner integral of
(B.7), and substituting the asymptotic formula (B.4), we
see that KðxÞ is asymptotically

x�g
ð1
2
Þ
jxjGðjxj þ gÞffiffiffi

p
p

Gð�gÞGðjxj þ 1
2
Þ

Z 1

�1

ð1� tÞ�g�1
2ð1þ tÞjxj�

1
2 dt. (B.8)

The substitution n ¼ ð1þ tÞ=2 in (B.8) shows that the
integral is equal to 2jxj�gBðjxj þ 1

2
;�gþ 1

2
Þ where B is the

beta function (Johnson et al., 1992, p. 7). Because
the beta function obeys the formula Bða; bÞ ¼
GðaÞGðbÞ=Gða; bÞ; we see that

KðxÞ�
ð2xÞ�gGðjxj þ gÞGð�gþ 1

2
Þffiffiffi

p
p

Gð�gÞGðjxj � gþ 1Þ
. (B.9)

Now as jxj ! 1; the ratio of gamma functions Gðjxj þ
gÞ=Gðjxj � gþ 1Þ is asymptotically jxj2g�1 (Johnson
et al., 1992, p. 6). Thus,

KðxÞ�
ð2xÞ�gGð�gþ 1

2Þffiffiffi
p

p
Gð�gÞ

jxj2g�1. (B.10)

In a similar way, one can show that the PðN ¼ nÞ is
asymptotically proportional to ng�1:
Appendix C. Moment relationships

The moments of X can be expressed generally in terms
of the moments of N. The text gives details for first and
second moments. Here we show how higher moments
can be related. We restrict attention to one dimension
with only the necessary detail to demonstrate that the
moments of X of order 2n are finite if and only if the nth
moment of N is finite for positive integer n. The Holder
inequality extends this result to multiple dimensions
because it shows that mixed moments of order 2n are
finite whenever the univariate moments of order 2n are
finite. The symmetry properties of X mean that all
moments of odd order are zero whenever they exist
regardless of the dimension of X.
Because X 2n is nonnegative, the 2nth moment

of X can be calculated according the conditional
expectation formula

E½X 2n	 ¼ EfE½X 2njN	g, (C.1)

regardless of whether this moment is finite. Representing
X as a sum of stepping-stone steps (formula (2)), we see
that

E½X 2njN	 ¼
XN

i1¼1

XN

i2¼1

� � �
XN

i2n¼1

E½Si1Si2 � � �Si2n
	.

Because E½Sm
i 	 is 0 for odd m and 1 for even m, and the

Si are mutually independent, E½Si1Si2 � � �Si2n
	 equals 1

if every integer in the subscript sequence fi1; i2; . . . ; ing

appears an even number of times. Else
E½Si1Si2 � � �Si2n

	 ¼ 0: Thus, if f ðm; 2nÞ is the number of
distinct sequences of 2n elements from the set
f1; 2; . . . ;mg with even appearances of elements (‘‘even
sequences’’), then

E½X 2njN	 ¼ f ðN; 2nÞ, (C.2)

and

E½X 2n	 ¼ E½f ðN; 2nÞ	. (C.3)

Now f ðm; 2nÞ satisfies the recurrence relationship

f ðm; 2nÞ ¼ 1þ
Xm�1

j¼1

Xn

k¼1

2n

2k

� �
f ðm � j; 2½n � k	Þ, (C.4)

where f ðm; 0Þ ¼ 1: This formula is derived as the sum
over j and k of the number of even sequences for which
j occurs 2k times, but 1; . . . ; j � 1 do not occur,
exhausting the set of even sequences of length 2n; from
m elements. The combinatorial notation

2n

2k

� �

is the number of ways the 2k appearances of j can be
arranged in the 2n possible places, and f ðm � j; 2½n � k	Þ

is the number of even sequences of length 2n � 2k for
indices other than 1; . . . ; j: The 1 in front of the sum
counts the single sequence containing j ¼ m only.
Using induction, this iteration implies that f ðm; 2nÞ is

a polynomial in m of order n because it is a sum from
j ¼ 1 to m � 1 of a polynomial of order n � 1 in ðm � jÞ;
according to finite difference calculus (e.g. Johnson et
al., 1992). Eq. (C.3) now yields the conclusion that the
2nth moment of X is finite whenever the nth moment of
N is finite. The reverse conclusion can be seen from the
fact that finiteness of the 2nth moment of X implies
finiteness of all lower order moments of X, which allows
finiteness of each moment of N up to n to be established
by induction from (C.3).
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Appendix D. Tips for calculating the kernel

In the text formulae, (52) and (53) define kernel
calculations in terms of the distribution of N. Although
straightforward in principle, these formulae require
high-precision calculations for accurate results. Of most
difficulty is calculating PðN ¼ nÞ in cases where N has a
high coefficient of variation. For the case of negative
binomial N in the one-dimensional case, we have
obtained good results from formula (53) by combining
the binomial kernel calculation and PðN ¼ nÞ from
Table 2 into one long product, as follows:

2m þ jxj

m

 !
1

2

� �2mþjxj

PðN ¼ 2m þ jxjÞ

¼ 1þ
m
k

� ��k Ymþjxj

j¼1

1
2
m

k þ m

� �
k þ m � 1

j
þ 1

� �

�
Ym
j¼1

1
2
m

k þ m

� �
k � 1

j
þ 1

� �
. ðD:1Þ

Such products can lead to overflow and underflow
problems in numerical calculations even though the
actual value of the product is neither exceptionally large
nor exceptional small. To prevent large intermediate
values from arising in these calculations, we changed the
order of these products by folding the sequence over as
follows: We created a sequence faig of 2m þ jxj numbers
from the terms after each product symbol in (D.1). We
reversed the second half of this sequence and interleaved
it with the first half to obtain a new sequence fbig ¼

fa1; a2mþjxj; a2; a2mþjxj�1; . . .g: We repeated this process
several times until we achieved the desired accuracy of
the final product. We judged the accuracy of the
calculations by the precision of the total sum of the
probabilities, the variance and kurtosis, all of which are
known analytically. Three foldings of the sequence were
generally sufficient for values of k as small as 0.02 for
10-figure accuracy for the sum of the probabilities, and
8-figure accuracy for the variance and kurtosis using
Gauss 6.0 (Aptech Systems, Inc).
For Sichel distributions, which include the negative

binomial as a limiting case, the following recurrence
formula allows the efficient calculation of PðN ¼ nÞ;
providing an alternative to the above methods:

PðN ¼ nÞ ¼
2xo
a2

gþ n � 1

n

� �
PðN ¼ n � 1Þ

þ
xo
a

� �2
PðN ¼ n � 2Þ

nðn � 1Þ
, ðD:2Þ

(Johnson et al., 1992). The first two probabilities are
calculated from the formula in Table 2, and hence only
three evaluations of the Bessel functions Kn are needed.
We have used this formula in conjunction with a table of
binomial kernels for efficient and accurate calculation of
Sichel kernels in one and two dimensions. The table of
binomial kernels was calculated by the recurrence relation-
ship PðX ¼ x þ 2Þ ¼ ðn � xÞPðX ¼ xÞ=ðn þ x þ 2Þ: For
n in the thousands, this relationship was initialized at x ¼

0 or 1, with this initial calculation aided by the sequence
folding technique described above.
References

Abramowitz, M., Stegun, I.A., 1964. Handbook of Mathematical

Functions with Formulas, Graphs and Mathematical Tables,

Applied Mathematics. National Bureau of Standards, Washington,

DC, 1046pp.

Barndorff-Nielsen, O.E., Blaesild, P., Halgreen, C., 1989. First hitting

time models for the generalized inverse Gaussian distribution.

Stochastic Process. Appl. 7, 49–54.

Barton, N., Depaulis, F., Etheridge, A., 2002. Neutral evolution in

spatially continuous populations. Theoret. Population Biol. 61,

31–48.

Billingsley, P., 1986. Probability and Measure. Wiley, New York.

Bolker, B., Pacala, S., 1999. Spatial moment equations for plant

competition: understanding spatial strategies and the advantages of

short dispersal. Amer. Naturalist 153, 575–602.

Bolker, B.M., Pacala, S.W., Neuhauser, C., 2003. Spatial dynamics in

model plant communities: what do we really know? American

Naturalist 162, 135–148.

Briggs, C., Hoopes, M.F., 2004. Stabilizing effects in a spatial

parasitoid–host and predator–prey models: a review. Theoret.

Population Biol. 65, 299–315.

Brown, D.H., Bolker, B.M., 2004. The effects of disease dispersal and

host clustering on the epidemic threshold in plants. Bull. Math.

Biol. 66, 341–371.

Cain, M.L., Damman, H., Muir, A., 1998. Seed dispersal and the

Holocene migration of woodland herbs. Ecol. Monogr. 68,

325–347.

Caswell, H., Lensink, R., Neubert, M.G., 2003. Demography and

dispersal: life table response experiments for invasion speed.

Ecology 84, 1968–1978.

Chapman, C.A., Russo, S.E., in press. Primate seed dispersal: linking

behavioral ecology with forest community structure. In: Campbell,

C.J., Fuentes, A.F., MacKinnon, K.C., Panger, M., Bearder, S.

(Eds.), Primates in Perspective. Oxford University Press, Oxford.

Chesson, P.L., 1978. Models for animal movements. Ph.D. Thesis, The

University of Adelaide, Adelaide.

Clark, J., Silman, M., Kern, R., Macklin, E., HilleRisLambers, J.,

1999. Seed dispersal near and far: patterns across temperate and

tropical forests. Ecology 80, 1475–1494.

Clark, J., Horvath, L., Lewis, M., 2001. On the estimation of

spread rate for a biological population. Statist. Probab. Lett. 51,

225–234.

Comins, H.N., Hassell, M.P., May, R.M., 1992. The spatial dynamics

of host-parasitoid systems. J. Anim. Ecol. 61, 735–748.

De Roos, A.M., McCauley, E., Wilson, W.G., 1998. Pattern formation

and the spatial scale of interaction between predators and their

prey. Theoret. Population Biol. 53, 108–130.

Dieckmann, U., Law, R., Metz, J.A.J., 2000. The Geometry

of Ecological Interactions: Simplifying Spatial Complexity,

Cambridge Studies in Adaptive Dynamics. Cambridge University

Press, Cambridge, 564pp.

Fang, K.T., Kotz, S., Ng, K.W., 1990. Symmetric Multivariate and

Related Distributions. Chapman & Hall, London.

Feller, W., 1971, An Introduction to Probability Theory and its

Applications, second ed., vol. II. Wiley, New York.



ARTICLE IN PRESS
P. Chesson, C.T. Lee / Theoretical Population Biology 67 (2005) 241–256256
Hassell, M.P., Comins, H.N., May, R.M., 1994. Species coexistence

and self-organizing spatial dynamics. Nature 370, 290–292.

Higgins, S.I., Richardson, D.M., 1999. Predicting plant migration

rates in a changing world: the role of long-distance dispersal. Amer.

Naturalist 153, 464–475.

Hovestadt, T., Messner, S., Poethke, H.J., 2001. Evolution of

reduced dispersal mortality and ‘‘fat-tailed’’ dispersal kernels in

autocorrelated landscapes. Proc. Roy. Soc. London, Seri. B 268,

385–391.

Ibrahim, K.M., Nichols, R.A., Hewitt, G.M., 1996. Spatial patterns of

genetic variation generated by different forms of dispersal during

range expansion. Heredity 77, 282–291.

Johnson, N.J., Kotz, S., Kemp, A.W., 1992. Univariate Discrete

Distributions. Wiley, New York.

Johnson, N.L., Kotz, S., Balakrishnan, N., 1994. Continuous

Univariate Distributions, vol. 1. Wiley, New York.

Kareiva, P., Wennergren, U., 1995. Connecting landscape patterns to

ecosystem and population processes. Nature 373, 299–302.

Kimura, M., Weiss, G.H., 1964. The stepping stone model of

population structure and the decrease of genetic correlation with

distance. Genetics 49, 561–576.

Kinezaki, N., Kawasaki, K., Takasu, F., Shigesada, N., 2003.

Modeling biological invasions into periodically fragmented envir-

onments. Theoret. Population Biol. 64, 291–302.

Klausmeier, C.A., 1999. Regular and irregular patterns in semiarid

vegetation. Science 284, 1826–1828.

Kot, M., Lewis, M.A., van den Driessche, P., 1996. Dispersal data and

the spread of invading organisms. Ecology 77, 2027–2042.

Lande, R., 1991. Isolation by distance in a quantitative trait. Genetics

128, 443–452.

Lande, R., Engen, S., Saether, B.E., 1999. Spatial scale of population

synchrony: environmental correlation versus dispersal and density

regulation. Amer. Naturalist 154, 271–281.

Levin, D.A., Kerster, H.W., 1975. The effects of gene dispersal on the

dynamics and statics of gene substitution in plants. Heredity 35,

317–336.

Levin, S.A., 1992. The problem of pattern and scale in ecology.

Ecology 73, 1943–1967.
Lewis, M.A., Pacala, S., 2000. Modeling and analysis of stochastic

invasion processes. J. Math. Biol. 41, 387–429.
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