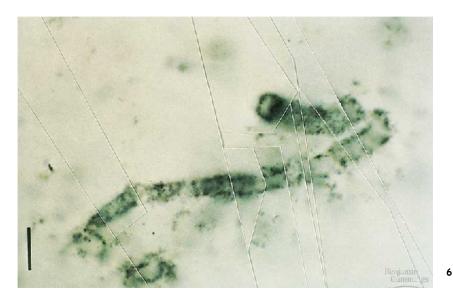

Prokaryotes, Protists, Photosynthesis, Endosymbiosis

26 February 2009 ECOL 182R UofA K. E. Bonine

Reconstructing the evolution of living things

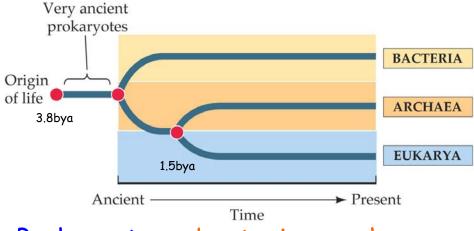
- Systematists study evolutionary relationships
- Look for shared derived (=different from ancestor) traits to group organisms
- Evidence used: morphology, development, and molecular data (especially DNA sequences)


Why can't we figure it out perfectly?

- More distant history is obscured by more changes
- Among oldest lineages of Bacteria and Archaea in particular, lots of "lateral gene transfer." Makes it difficult to infer relationships from phylogeny of single genes.

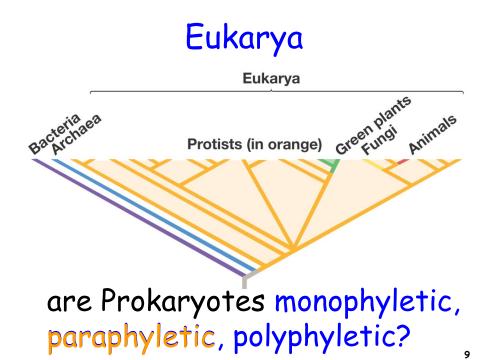
Diversity of Prokaryotes Bacteria & Archaea

Early prokaryote fossil


What are microbes?

- Only a minority make us sick
- Robert Koch, Germ Theory of Disease
- In ordinary English, might be anything small
 - bacteria
 - yeast
 - protists
 - viruses
- In science, classify by evolutionary relationships...

Life can be divided into 3 domains


7

8

Prokaryotes = bacteria + archaea

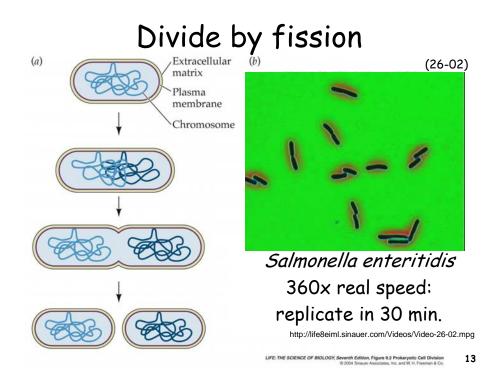
 Prokaryote was ancestral and only form for billions of years

Scheme has been revised before:

Haeckel (1894) Three kingdoms	Whittaker (1959) Five kingdoms	Woese (1977) Six kingdoms	Woese (1990) Three domains	
Protista	Monera (prokaryotes)	Eubacteria	Bacteria	
		Archaebacteria	Archaea	
	Protista	Protista		
Plantae	Fungi	Fungi	Eukarya	
	Plantae	Plantae		
Animalia	Animalia	Animalia		

modified from Wikipedia 10

Shared by all 3 domains

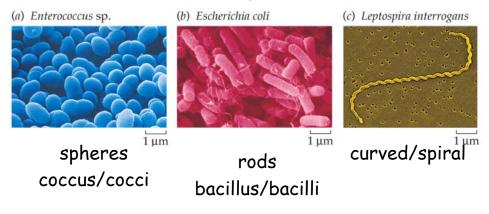

- Glycolysis (use glucose to get ATP)
- Semiconservative DNA replication: (2 strands in double helix, during replication each daughter cell gets one strand from parent, other is new)
- DNA encodes polypeptides
- Polypeptides produced by transcription and translation according to genetic code
- Plasma membranes and ribosomes

11

12

Unique to Prokaryotes

- Circular chromosome
- Genes organized into operons
- NO
 - nucleus: translation of mRNA into protein begins before transcription of DNA into mRNA is complete
 - organelles
 - cytoskeleton
 - meiosis [Genes can still get moved around in other ways, both within and between species. The latter is horizontal gene transfer. Antibiotic resistance can spread in this way.]



Prokaryotes are everywhere

- All around us and in us, too:
- Way more bacteria + archaea on your skin & in your intestinal tract than "you" cells
 WE ARE HABITAT
- > 3×10²⁸ in ocean (vs. visible stars in universe)
- Some survive extreme heat, alkalinity, saltiness
- Bottom of the sea
- Rocks more than 2km into Earth's solid crust

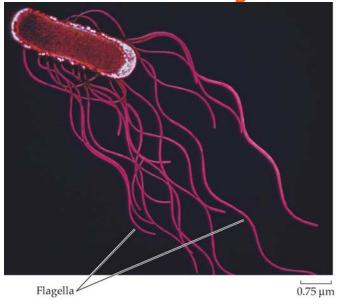
What do they look like?

Predominantly unicellular

may be found singly or in 2D/3D chains/plates/blocks
multicellular: each cell is viable independently

15

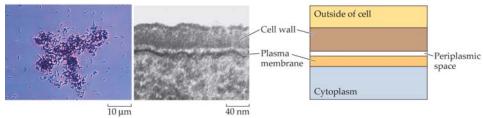
Biofilms


- Many prokaryotes (and some other microbes) lay down a gel-like substance on a surface. This matrix traps others, forming a biofilm.
- Biofilms can make bacteria difficult to kill. Pathogenic bacteria may form a film that is impermeable to antibiotics, for example.
- Dental plaque is a biofilm

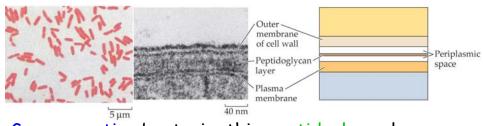
Bioluminescence

- Some bacteria make light
- Useful for getting into a new fish gut!

Most common bacterial motion is via flagella


Fibril of flagellin protein, plus a hook and basal body

17


Rotates about its base

Different from eukaryotic flagellum, which beats 18

Cell wall differences seen by Gram stain

Gram-positive bacteria: dense peptidoglycan cell wall

Gram-negative bacteria: thin peptidoglycan layer, behind outer membrane

Exploiting unique bacterial features

- Peptidoglycan cell walls unique to bacteria: not found in eukaryotes or archaea
- Many antibiotics disrupt cell-wall synthesis
- This affects only bacteria, and has little or no effect on eukaryotic cells

Morphology gives only limited view of bacterial diversity

Huge diversity in metabolic pathways

- oxygen tolerance
- energy source
- carbon source
- nitrogen and sulfur metabolism

21

Bioremediation? Hydrogen Production?

-Clean up oil spills, toxins -Produce chemicals we find useful

Enrichment Cultures

grow microbes under variable conditions and see which thrive

6 nutritional categories (energy, carbon)

 Photoautotrophs energy from <u>light</u>, carbon from CO₂
 Photoheterotrophs energy from <u>light</u>, C from other organisms
 Chemolithotrophs energy from oxidizing <u>inorganic</u> substances carbon from CO₂

some bacteria, many archaea

4. Chemolithotrophic heterotrophs energy from oxidizing <u>inorganic</u> substances carbon from other organisms

23

6 nutritional categories (energy, carbon)

5. Chemoorganoautotrophs energy from other organisms, carbon from CO₂

6. Chemoorganoheterotrophs

energy and carbon from other organisms

 most known prokaryotes, all animals, fungi, many protists

3 ways to get energy x 2 ways to get carbon = 6 nutritional (metabolic) categories

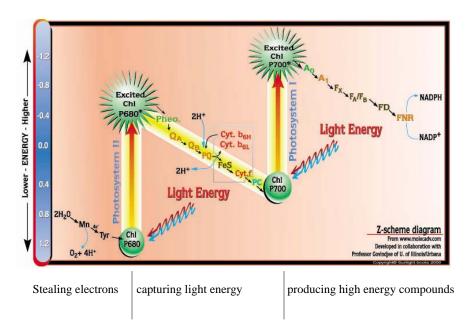
6 Metabolic Categories	Energy Source	Carbon Source
Photoautotrophs	light	CO ₂
Photoheterotrophs	light	other organisms
Chemolithotrophs	oxidizing inorganic substances	CO ₂
Chemolithotrophic heterotrophs	oxidizing inorganic substances	other organisms
Chemoorganoautotrophs	other organisms	CO ₂
Chemoorganoheterotrophs	other organisms	other organisms

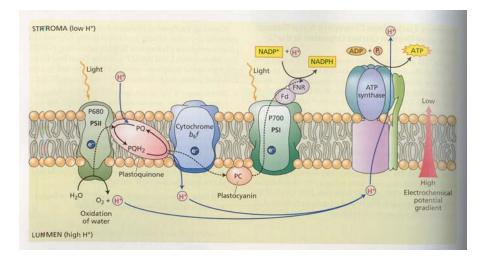
Prokaryotic Metabolic Variety

Evolution of Photosynthesis in Cyanobacteria

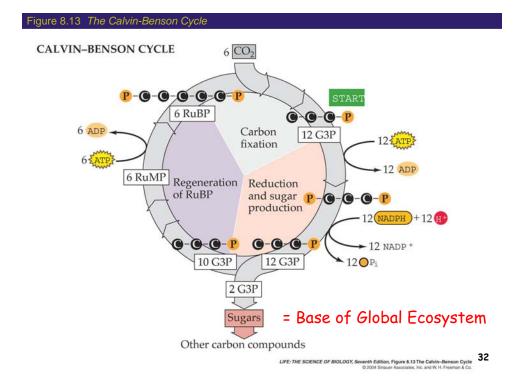
LIFE: THE SCIENCE OF BIOLOGY, Seventh Edition, Figure 27.11 Cyanobacteria (Part 2)

OXYGEN


None in atmosphere for first 2.3 billion years

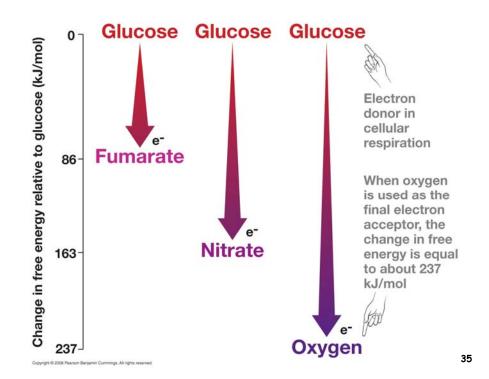

Cyanobacteria evolved photosynthesis (oxygenic): (ATP + water + oxygen)

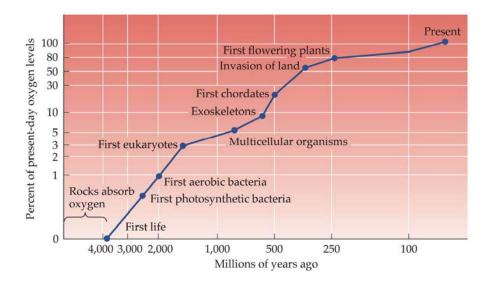
Aerobic more efficient than anaerobic


Oxygen

- Early earth had little free oxygen (O₂)
- 2.5 by a prokaryotes evolved ability to split 2H₂O -> 4H⁺ +O₂ +4e⁻
- Electrons used to reduce CO₂ and make organic compounds.
- O₂ was a waste product.

Then make glucose (and other sugars) ...


Oxygen-generating cyanobacteria form rocklike structures called stromatolites


33

Oxygen

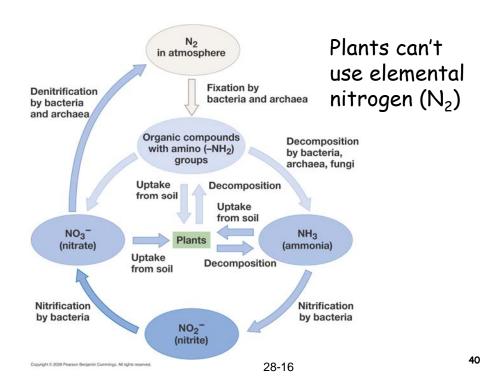
- Oxygen was poison when it first appeared
- Organisms evolved not just to tolerate oxygen, but to thrive
- Aerobic metabolism faster and more efficient

Increasing oxygen in atmosphere

Aerobic vs anaerobic metabolism

- 1. Oxygen is toxic to obligate anaerobes
- 2. Facultative anaerobes can shift between anaerobic metabolism (such as fermentation) and the aerobic mode (cellular respiration).
- 3. Aerotolerant anaerobes don't use oxygen, but aren't damaged by it
- 4. Obligate aerobes cannot survive without oxygen

37


Nitrogen and sulfur metabolism

Some bacteria use oxidized inorganic ions, such as nitrate, nitrite or sulfate

- Denitrifiers
- Nitrogen fixers
- Nitrifiers
- Sulfur-based metabolism

Prokaryotes are important in element cycling

- Plants depend on prokaryotic nitrogen-fixers
- Denitrifiers prevent accumulation of toxic levels of nitrogen in lakes and oceans

Nitrogen fixers

 Convert atmospheric N₂ gas into ammonia by means of the following reaction:

$$N_2 + 6 H \rightarrow 2 NH_3$$

- All organisms require fixed nitrogen (not N₂) for their proteins, nucleic acids, and other nitrogen-containing compounds
- Only archaea and bacteria, including some cyanobacteria, can fix nitrogen

41

TABLE 28.5 Some Electron Donors and Acceptors Used by Bacteria and Archaea

Electron Donor	Electron Acceptor	By-Products		
		From Electron Donor	From Electron Acceptor	Category*
Sugars	O2	CO2	H ₂ O	Organotrophs
H ₂ or organic compounds	504 ²⁻	H ₂ O or CO	H ₂ S	Sulfate reducers
H ₂	CO ₂	H ₂ O	CH ₄	Methanogens
CH4	O ₂	CO ₂	H ₂ O	Methanotrophs
S ²⁻ or H ₂ S	O ₂	SO4 ²⁻	H ₂ O	Sulfur bacteria
Organic compounds	Fe ³⁺	CO ₂	Fe ²⁺	Iron reducers
NH ₃	O ₂	NO2-	H ₂ O	Nitrifiers
Organic compounds	NO ₃ ⁻	CO ₂	N ₂ O, NO, or N ₂	Denitrifiers (or nitrate reducers
NO ₂ ⁻	O2	NO3-	H ₂ O	Nitrosifiers

Copyright © 2008 Pearson Benjamin Cummings. All rights reserved.

We use sugars as electron donor and oxygen as electron acceptor when making energy (=Cellular Respiration) Prokaryotes Variable!

Sulfur-based metabolism

Some photoautotrophic bacteria and chemolithotrophic archaea use H_2S as an electron donor instead of H_2O

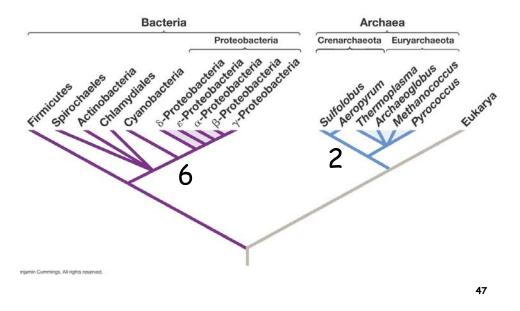
Archaea stave off global warming

- 10 trillion tons of methane lying deep under the ocean floor
- Archaea at the bottom of the seas metabolize this methane as it rises
- Otherwise global warming would be extreme

44

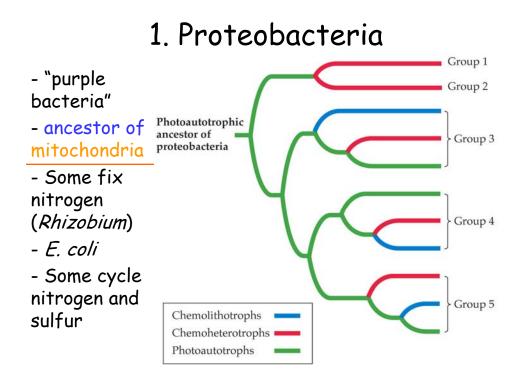
Prokaryotes live on and in other organisms

- Mitochondria and chloroplasts are descendents of free-living bacteria
- Plants and bacteria form cooperative nitrogen-fixing nodules on plant roots
- Ruminants depend on prokaryotes to digest cellulose
- Humans use vitamins produced by our intestinal bacteria


45

A very few bacteria are pathogens

Endotoxins


- e.g. Salmonella and Escherichia
- released when bacteria die or lyse (burst)
- lipopolysaccharides from the outer membrane of Gram-negative bacteria
- usually cause fever, vomiting, diarrhea
- Exotoxins
 - e.g. tetanus, botulism, cholera, plague, anthrax
 - released by living, multiplying bacteria
 - can be highly toxic, even fatal without fever

Diversity of prokaryotes

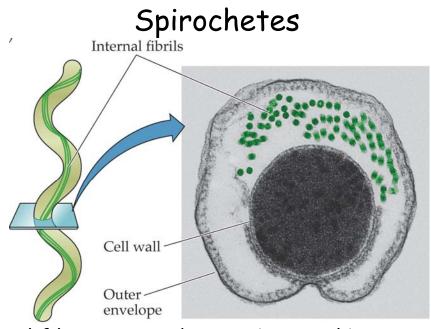
Diversity of prokaryotes

- We will discuss 6 clades of bacteria and 2 of archaea
- More are known
- More still are uncharacterized: can be hard to culture in lab
- PCR allows sequencing of unculturable organisms
- Phylogeny based primarily on DNA sequence: other traits can evolve rapidly 48

2. Cyanobacteria

- "blue-green" bacteria
- photoautotrophs
- transformed Earth with O₂
- many fix nitrogen
- ancestor of chloroplasts

3. Spirochetes


Treponema pallidum

- Gram-negative
- motile

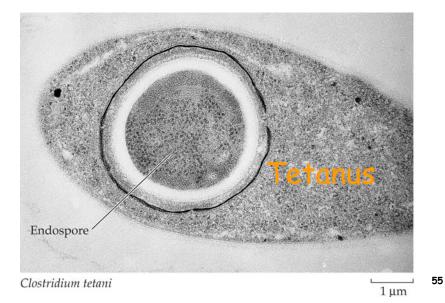
200 nm

- chemoheterotrophic
- some are human parasites
- cause syphilis and Lyme disease

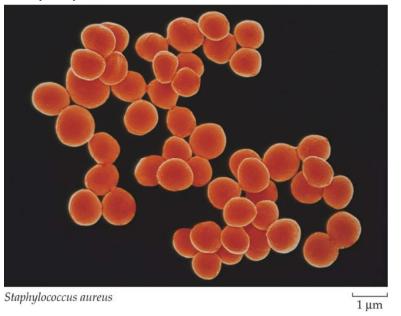
51

Axial filaments produce corkscrew-like motion

4. Chlamydias


- extremely small: 0.2-1.5 μ m diameter
- Gram-negative cocci
- can only live as parasites
- cause
 - sexually transmitted disease
 - eye infections (especially trachoma)
 - some forms pneumonia

53


5. Firmicutes

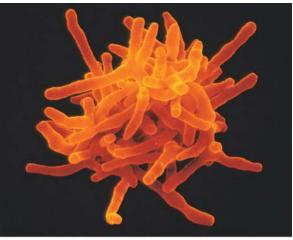
- mostly Gram-positive
- some produce dormant endospores to wait out bad times e.g heat, cold, drought
 - replicate DNA and encapsulate one copy in a tough cell wall
 - parent cell breaks down, releasing endospore
 - some endospores can be reactivated after more than a thousand years of dormancy

Firmicutes

Staphylococcus is a firmicute

Mycoplasmas are firmicutes

no cell walls
smallest known cellular organisms
very little DNA


Mycoplasma gallisepticum

0.2 µm

6. Actinobacteria often w/ branching filaments

Mycobacterium tuberculosis is an actinomycete

Most of our antibiotics come from actinomycetes e.g. *Streptomyces*

Actinomyces sp.

2 um

Archaea

- We don't know much
- None are human pathogens
- Most live in <u>extreme environments</u>: temperature, salinity, oxygen concentration, or pH
- Have distinctive lipids in their membranes
- Look at 2 groups
 - Crenarchaeota
 - Euryarchaeota

59

1. Crenarchaeota

- Most are thermophilic and acidophilic
- *Sulfolobus* live in hot sulfur springs, die of cold at 131°F

2. Euryarchaeota

- Some are methanogens, producing CH₄ from CO₂
- Responsible for 80-90% atmospheric methane, often from belching cows
- CH₄ is potent greenhouse gas

61

Some Euryarchaeota are halophiles

- very salty environments
- most organisms "dry" to death
- contain pink carotenoids
- live in commercial evaporating ponds

