Prokaryotes, Protists, Photosynthesis, Endosymbiosis

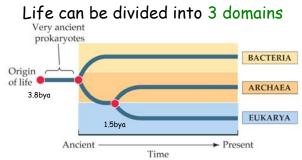
26 February 2009 ECOL 182R UofA K. E. Bonine

Reconstructing the evolution of living things

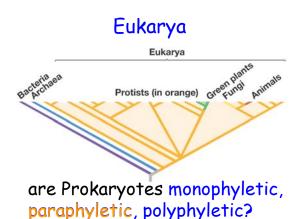
- *Systematists* study evolutionary relationships
- Look for *shared derived* (=different from ancestor) *traits* to group organisms
- Evidence used: morphology, development, and molecular data (especially DNA sequences)

Why can't we figure it out perfectly?

- More distant history is obscured by more changes
- Among oldest lineages of Bacteria and Archaea in particular, lots of "lateral gene transfer." Makes it difficult to infer relationships from phylogeny of single genes.


Diversity of Prokaryotes Bacteria & Archaea

Early prokaryote fossil


What are microbes?

- Only a minority make us sick
- Robert Koch, Germ Theory of Disease
- In ordinary English, might be anything small
 - bacteria
 - yeast
 - protists
 - viruses
- In science, classify by evolutionary relationships...

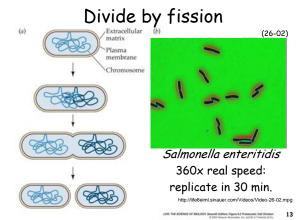
•Prokaryotes = bacteria + archaea

• Prokaryote was ancestral and only form for billions of years

Scheme has been revised before:

Haeckel (1894) Three kingdoms	Whittaker (1959) Five kingdoms	Woese (1977) Six kingdoms	Woese (1990) Three domains	
Protista	Monera (prokaryotes)	Eubacteria	Bacteria	
		Archaebacteria	Archaea	
	Protista	Protista		
Plantae	Fungi	Fungi	Eukarya	
	Plantae	Plantae		
Animalia	Animalia	Animalia		

modified from Wikipedia 10


Shared by all 3 domains

- Glycolysis (use glucose to get ATP)
- Semiconservative DNA replication: (2 strands in double helix, during replication each daughter cell gets one strand from parent, other is new)
- DNA encodes polypeptides
- Polypeptides produced by transcription and translation according to genetic code
- Plasma membranes and ribosomes

11

Unique to Prokaryotes

- Circular chromosome
- Genes organized into operons
- •NO
 - nucleus: translation of mRNA into protein begins before transcription of DNA into mRNA is complete
 - organelles
 - cytoskeleton
 - meiosis [Genes can still get moved around in other ways, both within and between species. The latter is horizontal gene transfer. Antibiotic resistance can spread in this way.]

Prokaryotes are everywhere

- All around us and in us, too:
- Way more bacteria + archaea on your skin & in your intestinal tract than "you" cells
 WE ARE HABITAT
- > 3×10²⁸ in ocean (vs. visible stars in universe)
- Some survive extreme heat, alkalinity, saltiness
- Bottom of the sea
- Rocks more than 2km into Earth's solid crust

What do they look like?

Predominantly unicellular

may be found singly or in 2D/3D chains/plates/blocks # multicellular: each cell is viable independently

15

Biofilms

- Many prokaryotes (and some other microbes) lay down a gel-like substance on a surface. This matrix traps others, forming a biofilm.
- Biofilms can make bacteria difficult to kill. Pathogenic bacteria may form a film that is impermeable to antibiotics, for example.
- Dental plaque is a biofilm

16

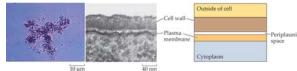
14

Bioluminescence

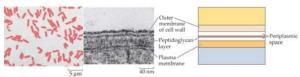
- Some bacteria make light
- Useful for getting into a new fish gut!

17

Most common bacterial motion is via flagella



Fibril of flagellin protein, plus a hook and basal body


Rotates about its base

Different from eukaryotic flagellum, which beats 18

Cell wall differences seen by Gram stain

Gram-positive bacteria: dense peptidoglycan cell wall

Gram-negative bacteria: thin peptidoglycan layer, behind outer membrane

Exploiting unique bacterial features

- Peptidoglycan cell walls unique to bacteria: not found in eukaryotes or archaea
- Many antibiotics disrupt cell-wall synthesis
- This affects only bacteria, and has little or no effect on eukaryotic cells

Bioremediation? Hydrogen Production?

-Produce chemicals we find useful

grow microbes under variable conditions and see which thrive

-Clean up oil spills, toxins

Enrichment Cultures

Morphology gives only limited view of bacterial diversity

Huge diversity in metabolic pathways

- oxygen tolerance
- energy source
- carbon source
- nitrogen and sulfur metabolism

21

23

6 nutritional categories (energy, carbon)

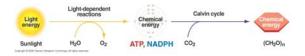
- 1. Photoautotrophs energy from <u>light</u>, carbon from CO₂
- Photoheterotrophs energy from <u>light</u>, C from other organisms
- 3. Chemolithotrophs energy from oxidizing <u>inorganic</u> substances <u>carbon from CO₂</u> some bacteria, many archaea
- 4. Chemolithotrophic heterotrophs energy from oxidizing <u>inorganic</u> substances carbon from other organisms

6 nutritional categories (energy, carbon)

5. Chemoorganoautotrophs energy from other organisms, carbon from CO₂

- 6. Chemoorganoheterotrophs energy and carbon from other organisms
 - most known prokaryotes, all animals, fungi, many protists

3 ways to get energy x 2 ways to get carbon = 6 nutritional (metabolic) categories


24

20

Prokaryotic Metabolic Variety

6 Metabolic Categories	Energy Source	Carbon Source
Photoautotrophs	light	CO ₂
Photoheterotrophs	light	other organisms
Chemolithotrophs	oxidizing inorganic substances	CO ₂
Chemolithotrophic heterotrophs	oxidizing inorganic substances	other organisms
Chemoorganoautotrophs	other organisms	CO ₂
Chemoorganoheterotrophs	other organisms	other organisms

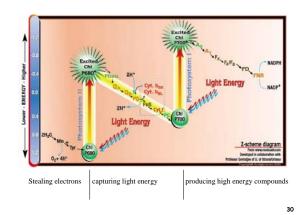
Evolution of Photosynthesis in Cyanobacteria

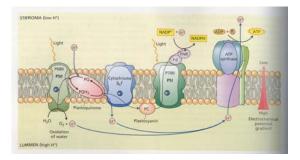
26

E THE BORINGE OF INDLOGY, Reventh Edition, Figure 27.11 Opendexchera (Fert2) 0.2021 Disease Association, Inc. and II. 11 Feature & Di-

25

OXYGEN

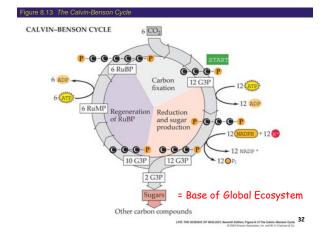

None in atmosphere for first 2.3 billion years


Cyanobacteria evolved photosynthesis (oxygenic): (ATP + water + oxygen)

Aerobic more efficient than anaerobic

Oxygen

- Early earth had little free oxygen (O_2)
- 2.5 bya prokaryotes evolved ability to split 2H₂O -> 4H⁺ +O₂ +4e⁻
- Electrons used to reduce CO₂ and make organic compounds.
- O₂ was a waste product.

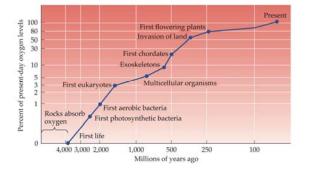


Then make glucose (and other sugars) ...

31

33

Oxygen-generating cyanobacteria form rocklike structures called stromatolites


Glucose Glucose Glucose 0 Change in free energy relative to glucose (kJ/mol) Electron donor in cellular e' respiration Fumarate 86-When oxygen is used as the final electron acceptor, the e. change in free Nitrate 163 energy is equal to about 237 kJ/mol e-237 Oxygen 35

Oxygen

- Oxygen was poison when it first appeared
- Organisms evolved not just to tolerate oxygen, but to thrive
- Aerobic metabolism faster and more efficient

34

Increasing oxygen in atmosphere

Aerobic vs anaerobic metabolism

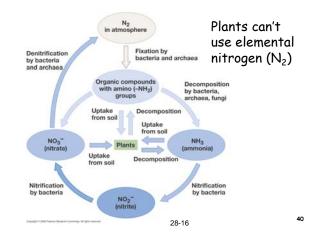
- 1. Oxygen is toxic to obligate anaerobes
- 2. Facultative anaerobes can shift between anaerobic metabolism (such as fermentation) and the aerobic mode (cellular respiration).
- Aerotolerant anaerobes don't use oxygen, but aren't damaged by it
- 4. Obligate aerobes cannot survive without oxygen

Nitrogen and sulfur metabolism

Some bacteria use oxidized inorganic ions, such as nitrate, nitrite or sulfate

- Denitrifiers
- Nitrogen fixers
- Nitrifiers

37


39

41

- Sulfur-based metabolism

Prokaryotes are important in element cycling

- Plants depend on prokaryotic nitrogen-fixers
- Denitrifiers prevent accumulation of toxic levels of nitrogen in lakes and oceans

Nitrogen fixers

 Convert atmospheric N₂ gas into ammonia by means of the following reaction:

 $N_2 + 6 H \rightarrow 2 NH_3$

- All organisms require fixed nitrogen (not N₂) for their proteins, nucleic acids, and other nitrogen-containing compounds
- Only archaea and bacteria, including some cyanobacteria, can fix nitrogen

TABLE 28.5 Some Electron Donors and Acceptors Used by Bacteria and Archaea

Electron Donor	Electron Acceptor	By-Products		
		From Electron Donor	From Electron Acceptor	Category*
Sugars	01	CO3	H _i O	Organotrophs
H ₂ or organic compounds	504 ³	H ₂ O or CO	H ₂ S	Sulfate reducers
H ₂	CO1	H ₂ O	CH,	Methanogens
CH4	02	CO2	H,O	Methanotrophs
5 ² or H ₂ S	01	50,2	H _i O	Sulfur bacteria
Organic compounds	Fe ¹⁺	CO2	Fe ¹⁺	Iron reducers
NH ₁	0,	NO ₃	H,O	Nitrifiers
Organic compounds	NO ₃	CO3	N _J O, NO, or N ₂	Denitrifiers (or nitrate reducers)
NO2	0,	NO	H ₁ O	Nitrosifiers

We use sugars as electron donor and oxygen as electron acceptor when making energy (=Cellular Respiration)

Prokaryotes Variable!

42

Sulfur-based metabolism

Some photoautotrophic bacteria and chemolithotrophic archaea use H_2S as an electron donor instead of H_2O

Archaea stave off global warming

- 10 trillion tons of methane lying deep under the ocean floor
- Archaea at the bottom of the seas metabolize this methane as it rises
- Otherwise global warming would be extreme

Prokaryotes live on and in other organisms

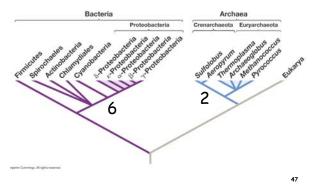
- Mitochondria and chloroplasts are descendents of free-living bacteria
- Plants and bacteria form cooperative nitrogen-fixing nodules on plant roots
- Ruminants depend on prokaryotes to digest cellulose
- Humans use vitamins produced by our intestinal bacteria

45

43

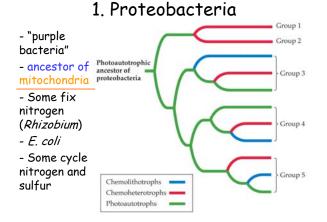
A very few bacteria are pathogens

44


Endotoxins

- e.g. Salmonella and Escherichia
- released when bacteria die or lyse (burst)
- lipopolysaccharides from the outer membrane of Gram-negative bacteria
- usually cause fever, vomiting, diarrhea

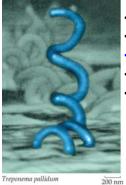
• Exotoxins


- e.g. tetanus, botulism, cholera, plague, anthrax
- released by living, multiplying bacteria
- can be highly toxic, even fatal without fever

Diversity of prokaryotes

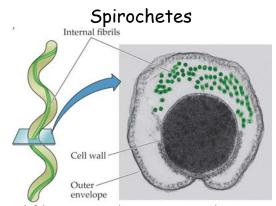
Diversity of prokaryotes

- We will discuss 6 clades of bacteria and 2 of archaea
- More are known
- More still are uncharacterized: can be hard to culture in lab
- PCR allows sequencing of unculturable organisms
- Phylogeny based primarily on DNA sequence: other traits can evolve rapidly 48



2. Cyanobacteria

50

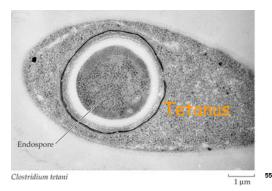

- "blue-green" bacteria
- photoautotrophs
- transformed Earth with O2
- many fix nitrogen
- ancestor of chloroplasts

3. Spirochetes

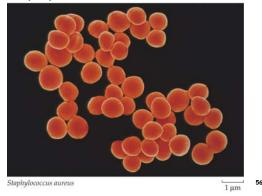
- Gram-negative
- motile
- chemoheterotrophic
- some are human parasites
 cause syphilis and Lyme disease

51

Axial filaments produce corkscrew-like motion


4. Chlamydias

- extremely small: 0.2-1.5 µm diameter
- Gram-negative cocci
- can only live as parasites
- cause
 - sexually transmitted disease
 - eye infections (especially trachoma)
 - some forms pneumonia


5. Firmicutes

- mostly Gram-positive
- some produce dormant endospores to wait out bad times e.g heat, cold, drought
 - replicate DNA and encapsulate one copy in a tough cell wall
 - parent cell breaks down, releasing endospore
 - some endospores can be reactivated after more than a thousand years of dormancy

Firmicutes

Staphylococcus is a firmicute

Mycoplasmas are firmicutes

- no cell walls
- -smallest known cellular organisms -very little DNA

59

6. Actinobacteria often w/ branching filaments

Mycobacterium tuberculosis is an actinomycete

Most of our antibiotics come from actinomycetes e.g. Streptomyces

Archaea

- We don't know much
- None are human pathogens
- Most live in <u>extreme environments</u>: temperature, salinity, oxygen concentration, or pH
- Have distinctive lipids in their membranes
- Look at 2 groups
 - Crenarchaeota
 - Euryarchaeota

1. Crenarchaeota

- Most are thermophilic and acidophilic
- *Sulfolobus* live in hot sulfur springs, die of cold at 131°F

2. Euryarchaeota

- Some are methanogens, producing $\rm CH_4$ from $\rm CO_2$
- Responsible for 80-90% atmospheric methane, often from belching cows
- CH_4 is potent greenhouse gas

61

Some Euryarchaeota are halophiles

- very salty
 environments
- most organisms "dry" to death
- contain pink carotenoids
- live in commercial evaporating ponds

