

http://eebweb.arizona.edu/eeb_course_websites.htm

Housekeeping, 18 January 2008

Did everyone get emails from Kevin Oh? if not, email him today (koh@email.arizona.edu)

Upcoming Readings

today: Textbook, chapter 1&2 Wed 23 Jan: Textbook, chapter 2&3 LAB Wed 23 Jan: Lienhard et al. 1992, Nesse & Williams 1998 see website for links to these papers Fri 25 Jan: Textbook chapter 3

> Lab discussion leaders: 23 Jan 1pm – xx 3pm – xx

Physiology (intro and lessons from Chap 1)

PHYSIOLOGY: How animals function, how they work

Integrate many systems, levels, areas of biology, physics, chemistry, biochemistry, genetics, etc.

Hummingbirds High-altitude geese Endotherms in cold water Freeze tolerance Nitrogen excretion Camels Etc.

3

Randall et al. 2002

Salmon...

Hill et al. 2004

Homeostasis

"The coordinated physiological processes which maintain most of the [constant] states in the organism"

Homeostasis?

Negative Feedback

-opposes deviation from setpoint.

Positive Feedback

-reinforces deviation from setpoint.

Vertebrate Physiology

Animal

- -"An animal is not a discrete material object" (Hill et al 2004 p. 10)
- -Energy required for organization (to fight entropy)
- -Body size:

15

Vertebrate Physiology

Evolutionary Processes

Evolution: Change of gene frequencies over time

- 1. Adaptation: a subset of evolution, Which evolves, individual or population? Why? driven by natural selection
- 2. Genetic Drift
- 3. Founder Effect
- 4. Pleiotropy (one gene, several traits)
- 5. No longer adaptive

Role of Genetic Variation

Adaptation

TIME

TABLE 1.2 The five time frames in which physiology changes Hill et al. 2004

Type of change	Description
Changes in physiology that are responses to	changes in the external environment
1. Acute changes	Short-term changes in the physiology of individual animals: changes that individuals exhibit right after their environments have changed; acute changes are reversible
2. Chronic changes (acclimation and acclimatization)	Long-term changes in the physiology of individual animals: changes that individuals display after they have been in new environments for days, weeks, or months; chronic changes are reversible
3. Evolutionary changes	Changes that occur by alteration of gene frequencies over the course of many generations in populations exposed to new environments
Changes in physiology that are internally pro	ogrammed to occur whether or not the external environment changes
4. Developmental changes	Changes in the physiology of individual animals that occur in a programmed way as the animals mature from conception to adult- hood and then to senescence
5. Changes controlled by periodic biological clocks	Changes in the physiology of individual animals that occur in repeating patterns (e.g., each day) under control of the animals' internal biological clocks

Genotype vs. Phenotype

17

Modification in response to environment within a lifetime (reversibility?)

Acclimation (laboratory)

Similar to acclimatization but more artificial

18

Adaptation

Plasticity

Ontogenetic, environmental

Plastic Man

Vertebrate Physiology

Environments

Chemical, physical, and biological components of an organism's surroundings

- 1. Temperature
- 2. Oxygen (air, water)
- 3. Water (osmoregulation)

-Microhabitats -Behavior

Number of species of swallowtail butterflies

Krogh principle

For many physiological questions, there is an animal model ideally suited to answer it.

Xenopus eggs

Giant squid axons

Sea raven (fish) heart

Kangaroo rat kidney

Horned lizard diet

Genetic engineering (diabetic mice, knockouts, obesity, etc.)

22

Discussion Question

In small groups of about 3 students:

How would you design an experiment to test the hypothesis that saltwater crocodiles are <u>osmoconformers</u>?

OR

How would you ascertain whether or not the extra-long loops of Henle in Kangaroo Rat kidneys were an <u>adaptation</u> to their desert habitat and lifestyle?