
Lecture 3, 23 Jan 2008

Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 2008

Kevin Bonine & Kevin Oh

- 1. Biochem Blitz (Chap 2)
 - -Cells
 - -Membranes
 - -Molecules
 - -Pathways

http://eebweb.arizona.edu/eeb_course_websites.htm

Housekeeping, 23 January 2008

2

Upcoming Readings

today: Textbook, chapter 2&3

LAB Wed 23 Jan: Lienhard et al. 1992, Nesse & Williams 1998

(see website for links to papers, or get via email)

Fri 25 Jan: Textbook chapter 3

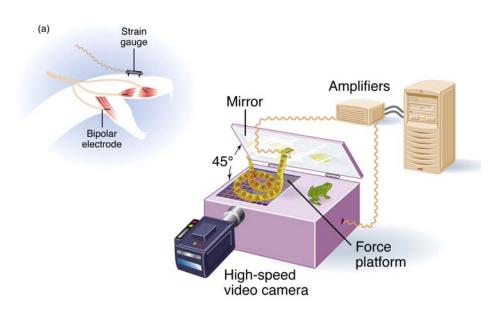
Mon 28 Jan: Ch 10

Lab discussion leaders: 23 Jan Lab discussion leaders: 30 Jan

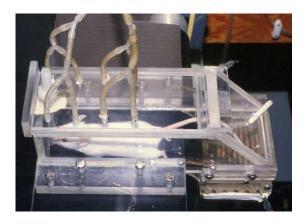
1pm – Allison, Rachel 1pm – Josh, Seth 3pm – Kelsey, Sean 3pm – Aaron, Adam

Organism-level Approaches

- Physiological State


- Sleeping
- Resting
- Alert
- Exercising
- Stress-level
- Fasting or Fed

- Age
- Sex
- Season
- Reproductive Condition


- BMR
- RMR

3

Behavior

Doing Physiology

5

Scientific Literature 1/4

Table 1-2 A sampling of scientific journals that publish physiological research papers

Name	Abbreviation*	Topics covered
General journals		
American Journal of Physiology	Am. J. Physiol.	7
Pflügers Archiv für Physiologie (now European Journal of Physiology)	Pflugers Arch. Physiol. (Eur. J. Physiol.)	- Broad areas of physiology from the cell to organ systems
Journal of Physiology	J. Physiol.	
Journal of General Physiology	J. Gen. Physiol.	 Physiological and biophysical studies at the cellular and subcellular level
Comparative Physiology and Biochemistry	Comp. Physiol. Biochem.	7
Journal of Comparative Physiology	J. Comp. Physiol.	
Journal of Experimental Biology	J. Exp. Biol.	 Many different areas, with emphasis on lower verte- brates and invertebrates
Physiological and Biochemical Zoology	Physiol. Biochem. Zool.	

^{*}Single-word journal names are not abbreviated.

Randall et al. 2002

6

Scientific Literature 2/4

 $\textit{Table 1-2} \quad \text{A sampling of scientific journals that publish physiological research papers}$

Name	Abbreviation*	Topics covered
Specialty journals		
Brain, Behavior, and Evolution	Brain Behav. Evol.	7
Cell		
Circulation Research	Circ. Res.	
Evolution and Development	Evol. Dev.	
Endocrinology		
Gastroenterology		Research related to specific areas or processes
Journal of Cell Physiology	J. Cell Physiol.	indicated by journal's name
Journal of Membrane Biology	J. Membr. Biol.	
Journal of Neurophysiology	J. Neurophysiol.	
Journal of Neuroscience	J. Neurosci.	
Molecular Endocrinology	Mol. Endocrinol.	
Nephron		
Respiration Physiology	Respir. Physiol.	

*Single-word journal names are not abbreviated.

Randall et al. 2002

7

Scientific Literature 3/4

Table 1-2 A sampling of scientific journals that publish physiological research papers

Name	Abbreviation°	Topics covered
Annual reviews		
Annual Review of Neuroscience	Annu. Rev. Neurosci.	٦
Annual Review of Physiology	Annu. Rev. Physiol.	Summaries and evaluations of original papers on pa
Federation Proceedings	Fed. Proc.	ticular topics published in other journals
Physiological Reviews	Physiol. Rev.	

*Single-word journal names are not abbreviated.

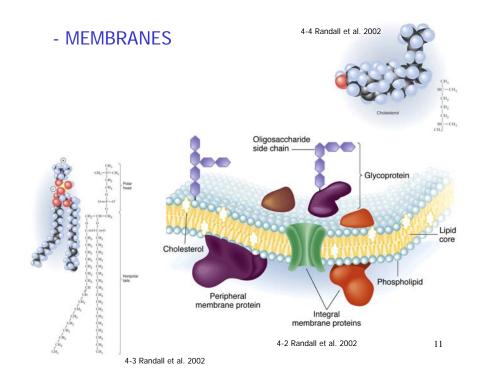
Randall et al. 2002

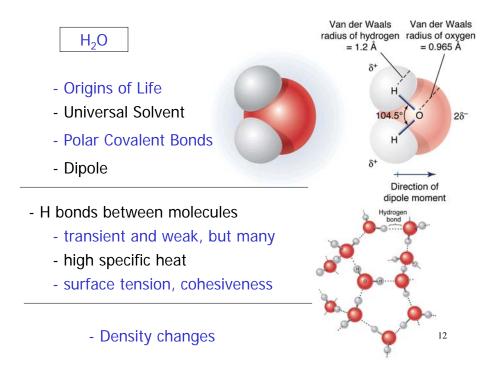
Scientific Literature 4/4

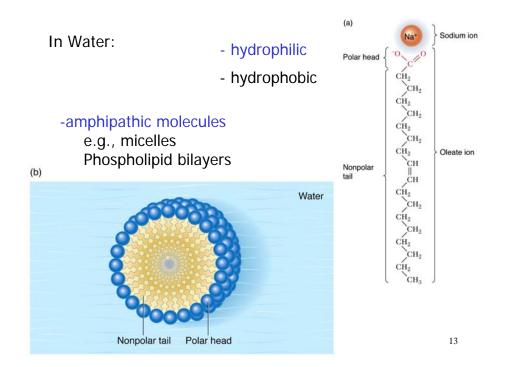
 $\textit{Table 1-2} \quad \text{A sampling of scientific journals that publish physiological research papers}$

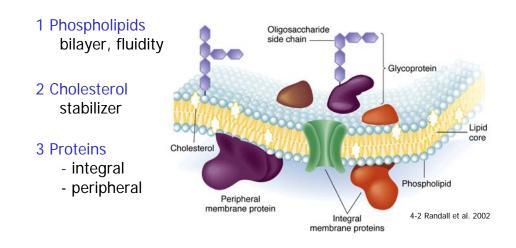
Name	Abbreviation*	Topics covered
Taxonomy-oriented journals Auk		1
Condor Emu		Physiology and other topics related to birds
Crustaceana Copeia Herpetologica Journal of Herpetology	J. Herpetol.	Physiology and other topics related to crustaceans Amphibian and reptilian physiology
Journal of Mammalogy	J. Mammal.	- Physiology and other topics dealing with mammals
Weekly journals		
Nature Science		Preliminary reports about topics of general interest to the scientific community

^{*}Single-word journal names are not abbreviated.


Randall et al. 2002


9


Hill et al. Chapter 2


Cells, Membranes, Molecules, Pathways

Membrane Structure and Composition

Biological Molecules

1- Lipids

- saturated -> cholesterol

No double bonds in side chains (saturated with hydrogens) ~solid at room temperature

- high energy/ gram
- phospholipids

Table 3-3 The energy content of the three major categories of foodstuffs

Substrate	Energy of	content (kcal·g $^{-1}$)
Carbohydrates		4.0
Proteins	Migrating bird?	4.5
Fats		9.5

Randall et al. 2002

Figure 2.2 The structure of membrane phospholipid molecules

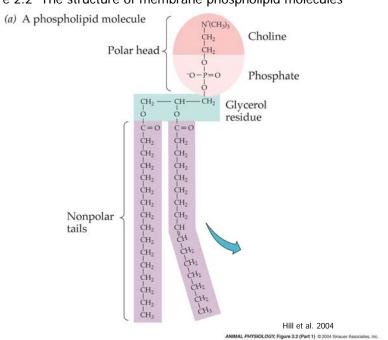
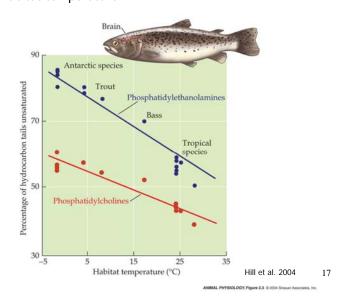
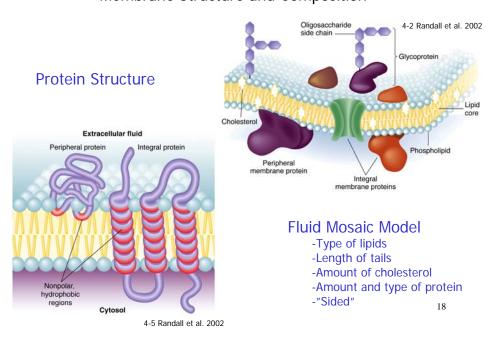
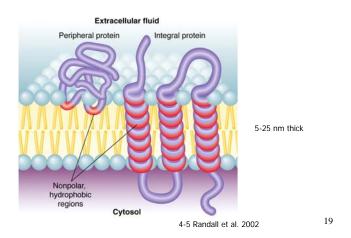
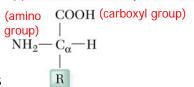




Figure 2.3 Degree of unsaturation of brain phospholipids in fish varies with habitat temperature



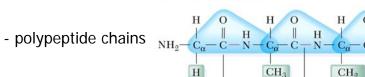
Membrane Structure and Composition

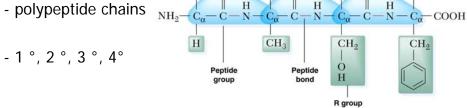
Discussion Question

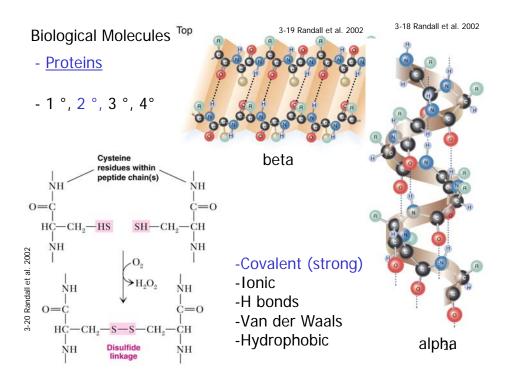

How do scientists come up with the protein conformations such as pictured here:

Biological Molecules

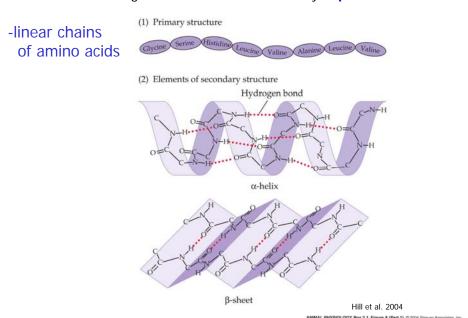
- 2- Proteins
- linear chains of amino acids
- 20 common alpha-amino acids


(a) General structure of alpha-amino acids


- amphoteric


- peptide bonds

3-17 Randall et al. 2002



(b) Structure of a tetrapeptide

Box 2.1, Figure A The structural hierarchy of proteins

Box 2.1, Figure A The structural hierarchy of **proteins**

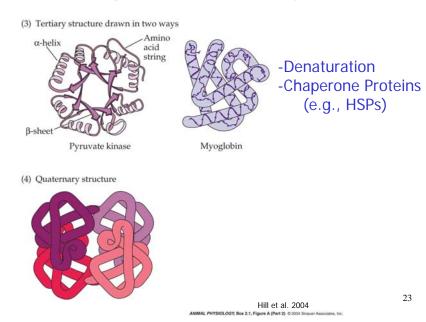
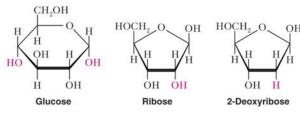


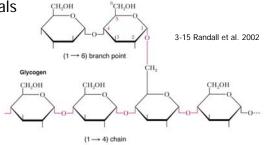
TABLE 2.1 The five functional types of membrane proteins and the functions they perform

Functional type	Function performed (defining property)
Channel	Permits simple or quasi-simple diffusion of solutes in aqueous solution (page 70)—or osmosis of water (page 87)—through a membrane; a simplified view of a channel is that it creates a direct water path from one side to the other of a membrane (i.e., an aqueous pore) through which solutes in aqueous solution may diffuse or water may undergo osmosis
Transporter (carrier)	Binds noncovalently and reversibly with specific molecules or ions to move them intact across a membrane; the transport through the membrane is <i>active transport</i> (page 74) if it employs metabolic energy; it is <i>facilitated diffusion</i> (page 74) if metabolic energy is not employed
Enzyme	Catalyzes a chemical reaction in which covalent bonds are made or broken (page 41)
Receptor	Binds noncovalently with specific molecules and as a consequence of this binding, initiates a change in membrane permeability or cell metabolism; receptor proteins mediate the responses of a cell to chemical messages (signals) arriving at the outside face of the cell membrane (page 56)
Structural protein	Attaches to other molecules (e.g., other proteins) to anchor intracellular elements (e.g., cytoskeleton filaments) to the cell membrane, creates junctions between adjacent cells (Figure 2.7), or establishes other structural relations


Hill et al. 2004

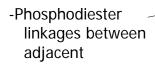
Biological Molecules (a) Monosaccharide sugars

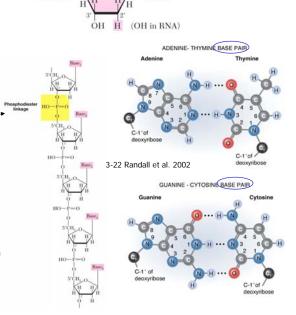
3-14 Randall et al. 2002


3- Carbohydrates

 $-(CH_2O)_n$

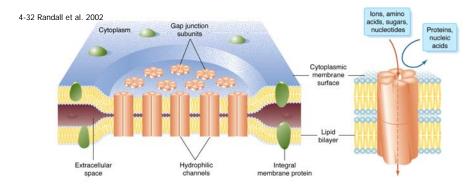
- monosaccharides, (disaccharides)
- glucose is common metabolic currency from plants to animals


- glycogen (storage)


3-21 Randall et al. 2002

Biological Molecules

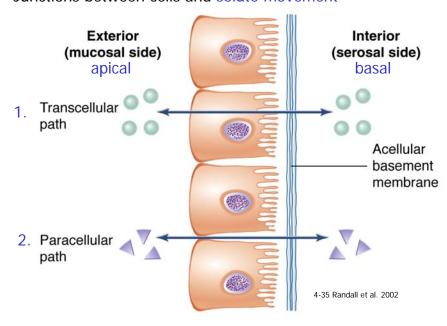
- 4- Nucleic Acids
- pyrimidine (T,C) or
- purine (A,G)



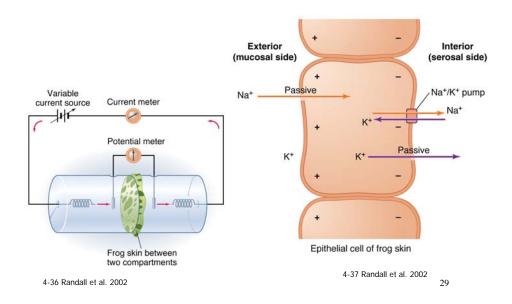
- transcription (nucleus) DNA -> mRNA
- translation (ribosome) mRNA -> tRNA -> protein (genetic code)

Junctions between cells

1. Gap ~linked

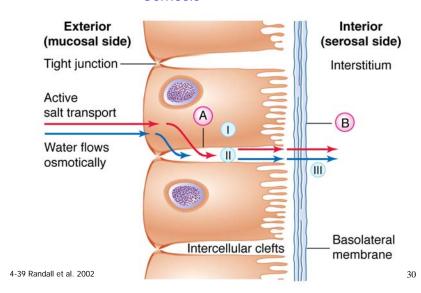


2. Tight


~ impermeable barriers

27

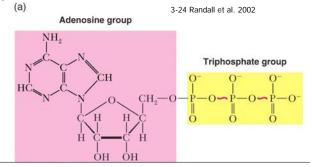
Junctions between cells and solute movement



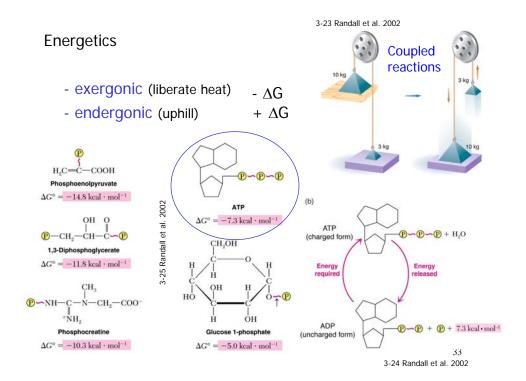
Solute movement and variability of membrane properties

Solute movement and subsequent water movement

Osmosis



Enzymes and Energetics (Hill et al. Ch 2, con't)


31

Energetics (sun is origin)

- metabolism
- energy/ATP
- building blocks
- small, controlled oxidation steps

- 1st law energy neither created or destroyed
- 2nd law entropy will reign
- free energy ΔG (energy available to do useful work)
- ΔG
- exergonic (~liberate heat)
- + ΔG
- endergonic (uphill) $_{\rm 32}$

Phosphorylation

- -Protein Kinases
- -Protein Phosphatases

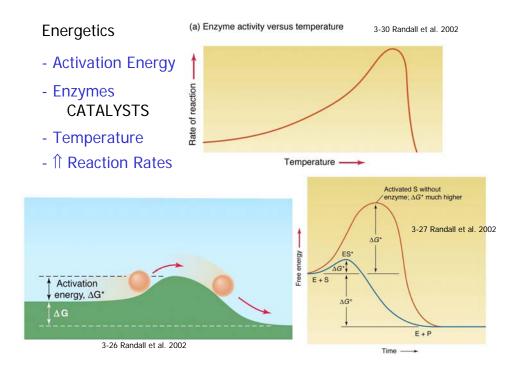
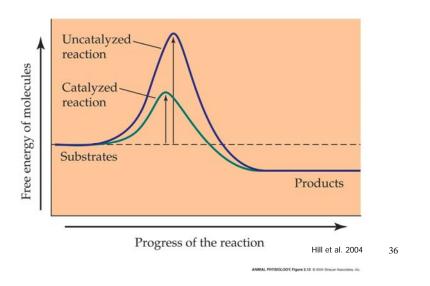
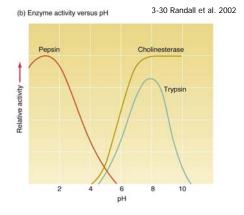



Figure 2.13 Enzymes speed reactions by lowering the needed activation energy

Enzymes


- pH, temperature
- Cofactors (often vitamins)

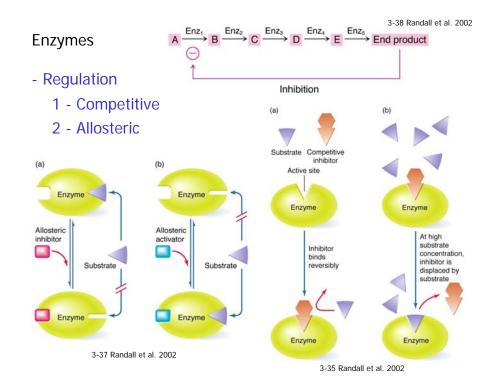
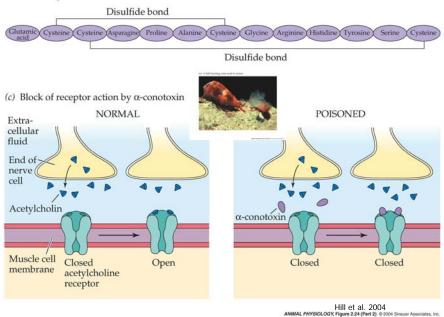
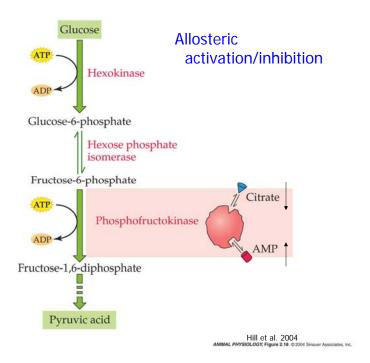
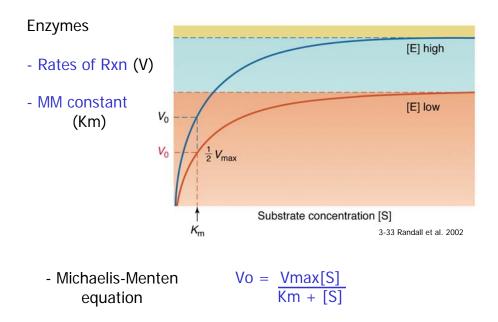

Randall et al. 2002

Table 3-6 Metal ions functioning as cofactors


Metal ion	Some enzymes requiring this cofactor
Ca ²⁺	Phosphodiesterase
	Protein kinase C
Cu ²⁺ (Cu ⁺)	Cytochrome oxidase
	Tyrosinase
Fe ²⁺ or Fe ³⁺	Catalase
	Cytochromes
	Ferredoxin
	Peroxidase
K+	Pyruvate phosphokinase (also requires Mg ²⁺)
Mg^{2+}	Phosphohydrolases
	Phosphotransferases
Mn2+	Arginase
	Phosphotransferases
Na ⁺	Plasma membrane ATPase (also requires K ⁺ and Mg ²⁺)
Zn^{2+}	Alcohol dehydrogenase
	Carbonic anhydrase
	Carboxypeptidase


(a) Enzyme activity versus temperature



(b) An example of an α-conotoxin

