Lecture 4, 25 Jan 2008

Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 2008

Kevin Bonine & Kevin Oh

- 1. Enzymes etc. (Ch 2)
- 2. Water, Solutes, Osmosis (Ch 3)

http://eebweb.arizona.edu/eeb_course_websites.htm

Housekeeping, 25 January 2008

Upcoming Readings

today: Ch 3

LAB Wed 30 Jan: Bisbal & Specker, plus two optional papers

(see website for links to papers, or get via email)

Mon 28 Jan: Ch 3&10 Wed 30 Jan: Ch 10&11

Lab discussion leaders: 30 Jan Lab discussion leaders: 06 Feb

1pm – Josh, Seth 1pm – Rittner, Whitney 3pm – Aaron, Adam 3pm – Roxanne, Maria

Enzymes, Kinetics, Pathways... (Hill et al. Ch 2, con't)

3

- Michaelis-Menten equation

$$Vo = \frac{Vmax[S]}{Km + [S]}$$

Figure 2.14 The approach to saturation depends on enzyme—substrate affinity

Figure 2.12 Reaction velocity as a function of substrate concentration

(b) G protein-coupled receptor and associated G protein system

NIMAL PHTSIOLOGY, Figure 2.23 (Part 2) © 2004 Snauer Associates, Inc.

Membrane Signaling

(c) Enzyme/enzyme-linked receptor

Hill et al 2004

ANIMAL PHYSIOLOGY, Figure 2.23 (Part 3) © 2004 Sineuer Associates, Inc.

Membrane Signaling

(d) Intracellular receptor

Hill et al 2004

ANIMAL PHYSIOLOGY, Figure 2.23 (Part 4) © 2004 Sinauer Associates, Inc.

ANIMAL PHYSIOLOGY, Figure 2.25 © 2004 Sinauer Associates, Inc.

Vertebrate Physiology 437

Chapter 3

Movement of Solutes and Water

15

What are the different ways to get substances across membranes?

Movement Across Membranes

- 1. Passive Diffusion (= simple diffusion)
- 2. Passive Transport (= facilitated diffusion)
- 3. Active Transport

Transport (pore or carrier) may be <u>highly selective</u>

How does a channel act selectively?

Ion Channels

- Ion selectivity
- Leaky channels (e.g., K+)
- Voltage-gated channels (e.g., Na+, K+, Ca+)
- Ligand-gated channels etc.

Movement Across Membranes

- 1. Passive Diffusion (= simple diffusion)
- nonpolar/nonelectrolyte
- lipid soluble (steroid hormones)
- few H bonds
- ~smaller size
- -rate depends on [] gradient
- -No saturation

Diffusion

Fick Equation:

$$J = D \frac{C_1 - C_2}{X}$$

J = net rate of diffusion

D = diffusion coefficient (depends on permeability and Temp)

 C_1 - C_2 = [gradient] X = distance separating C1 from C2

21

TABLE 3.1 The time required for diffusion through water to halve a concentration difference Values are calculated for small solutes such as O₂ or Na⁺. For each distance between solutions, the time listed is the time that will be required for diffusion to transport half the solute molecules that must move to reach concentration equilibrium. It is assumed that no electrical effects exist, and thus only diffusion based on concentration effects is occurring.

Time required to halve a concentration difference by diffusion	Distance between solutions	A biological dimension that exemplifies the distance specified
100 nanoseconds	10 nanometers	Thickness of a cell membrane
100 milliseconds	10 micrometers	Radius of a small mammalian cell
17 minutes	1 millimeter	Half-thickness of a frog sartorius muscle
1.1 hours	2 millimeters	Half-thickness of a human eye lens
4.6 days	2 centimeters	Thickness of the human heart muscle
32 years	1 meter	Length of a long human nerve cell

Source: After Weiss 1996.

Hill et al 2004

ANIMAL PHYSIOLOGY, Table 3.1 © Sin

Movement Across Membranes

- 1. Passive Diffusion (= simple diffusion)
- 2. Passive Transport (= facilitated diffusion)

Down Electrochemical gradient

- A. pore
- B. carrier mediated
- pores show some saturation, but not as much as carriers

Movement Across Membranes

- 1. Passive Diffusion (= simple diffusion)
- 2. Passive Transport (= facilitated diffusion)

Fernandina

Galapagos Marine Iguana (Iguanidae)

El Nino → lack of food

Starvation

high cost of salt excretion

Animals may lose 15% body length -bone absorption

Only adult vertebrate known to regularly shrink

(astronauts?)

Largest animals die

- natural selection vs.
- sexual selection

(Most efficient salt glands known in reptiles)

Amblyrhynchus cristatus

Blood plasma Pond water -3 Na+ H+-2 K+ Na+--Apical membrane Basolateral membrane Transport against the electrochemical gradient ATPase Transport in the direction of the electrochemical gradient Countertransporter

(See Tipsmark et al 2002)

Channel

(2) New model

Hill et al 2004

Membrane Selectivity (Channels)

Charge, ease of dehydration, size

4-29 Randall et al. 2002 Lipid bilayer

Diffusion

- nonpolar/nonelectrolyte
- lipophilic
- few H bonds
- smaller size

Transport

- -rates depend on
- 1. electrochemical gradient
- 2. # carriers/pores

Movement Across Membranes

How is this related to the early test for diabetes??

(a) Passive diffusion through membrane

4-20 Randall et al. 2002

(b) Passive transport through channels

(c) Carrier-mediated transport (passive or active)

Movement Across Membranes

33

Movement Across Membranes

Movement Across Membranes

How does glucose cross membranes?

Most tissues:

-Passive transport down [] gradient via carrier proteins

In gut:

-2° active to move Glu against [] gradient into blood from "food"

(c) Na⁺–glucose cotransporter in apical membrane

Hill et al 2004

ANIMAL PHYSIOLOGY, Figure 3.12 (Part 3) © 2004 Sinauer Associates, Inc.

Leinhard et al. 1992

Osmotic Properties of Cells and Relative Ion Concentrations

Permeabilities

K+ >> Na+ ; Cl-

[A*] = molar equivalent of negative charges carried by other molecules and ions.

A* (includes proteins, phosphate groups, etc.)

39

Electrogenic vs. Electroneutral

Hill et al 2004

ANIMAL PHYSIOLOGY, Figure 3.10 © 2004 Singuer Associates, Inc.

Ion Gradients as an Energy Source Inner mitochondrial ATP CET example: membrane synthase -Metabolism -Electron Transport Chain -ATP creation energy currency Matrix Respiratory chain 4-27 Randall et al. 2002 Mitochondrion 1 Move molecules 2 Electrical Signalling 3 Chemiosmotic Energy Transduction 3-42 Randall et al. 2002

Just add water...

How does water move across membranes?

aquaporins

Osmotic Properties of Cells and Relative Ion Concentrations

Colligative Properties

- Osmotic Pressure
- Freezing Point
- Water Vapor Pressure (boiling point; evaporation)

Hill et al 2004

Measurements on two solutions separated from pure water

Osmosis when the two solutions are separated from each other

Hill et al 2004

 6×10^{23}

Osmolarity

1 osmolar solution (Osm)

has 1 Avogadro's number of dissolved particles/liter solvent

1 milliosmolar solution (mOsm)

has 0.001 Avogadro's number of dissolved particles/liter solvent

47

What osmolarity do you get if you add 6×10^{23} molecules of glucose to a liter of water?

What osmolarity do you get if you add 6×10^{23} molecules of table salt to a liter of water?

NaCl (strong electrolyte)

(a) A piston device for direct measurement of osmotic pressure Semipermeable membrane Pure water Hydrostatic Pressure (b) The consequence if the piston is free to move (c) The consequence if the solution is placed under pressure that exactly opposes osmosis Force Osmotic water movement Water movement caused by hydrostatic pressure Hill et al 2004 AMMAL PHYSIOLOGY, Figure 2.18 © 2004 Ensure Amendmen, inc. Osmotic Pressure Vs. Hydrostatic Pressure Vs. Hydrostatic Pressure Hydrostatic Pressure Hydrostatic Pressure 49

Electrochemical equilibrium

Fig 3.6, Hill et al 2004

51

Movement Across Membranes

Electrochemical Gradient

Electrical gradient

Concentration gradient

Electrochemical equilibrium

Equilibrium potential (E_x in mV) when [X] gradient = electrical gradient

Equilibrium potential (E_x in mV)

"Every ion's goal in life is to make the membrane potential equal its own equilibrium potential $(E_x \text{ in mV})$ "

53

p. 214, Silverthorn 2001. 2nd ed. <u>Human Physiology</u>. Prentice Hall