Lecture 6, 30 Jan 2008

Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 2008

Kevin Bonine & Kevin Oh

- 1. Intro Nervous System Fxn
- (slides 32-60 from Mon 28 Jan; Ch10)
- 2. Neurons & Action Potentials (Ch11)
- (slides in this file)

http://eebweb.arizona.edu/eeb_course_websites.htm

Housekeeping, 30 January 2008

Upcoming Readings

today: Ch 10&11 LAB Wed 30 Jan: Bisbal & Specker, plus two optional papers (see website for links to papers; "worksheet" via email) Fri 01 Feb: Ch11 Mon 04 Feb: Ch 12, Slowinski article

Lab discussion leaders: 30 Jan 1pm – Josh, Seth 3pm – Aaron, Adam Lab discussion leaders: 06 Feb 1pm – Rittner, Whitney 3pm – Roxanne, Maria

(c) The membrane length constant decribes the exponential decrement

All-or-None from spike-initiating zone

Changes in ion permeability...Changes in membrane potential

-Voltage-gated ion channels vs. ligand-gated

- Na+, K+, (Ca2+)

is not force all action potentials in a measure net identical, the strength of the stimulus is indicated by the frequency of action potentions (n) A graduated potential that is barred above threads classes a netrics of action potentials to possible and decare new assumes (b) A stronger graded potential increases the frequency of action potential foring in the axim and releases more assumes the classes of the action of the action of the action of the action action potential foring in the axim and releases more assumes the classes of the action of the acti

erthorn 2001. 2nd ed. <u>Human Physiology</u>. Prentice Ha

Action Potentials

-Moves information; high-speed communication

-Thoughts, Sensations, Memories, Movements etc.

-Moves SIGNAL without decrement

-AP possible because:

1 Ionic gradients across membrane

2 Creates electrochemical gradient and therefore source of potential energy

3 When ion channels open, ions move down their electrochemical gradients and rapidly change the membrane potential (V_m)

- Na+ and K+ responsible for AP character...

Channel	Current through channel	Characteristics	Selected blockers	Function
Leak channel (open in resting axon)	$I_{K}(\text{leak})$	Produces relatively high $P_{\mathbf{k}}$ of resting cell	Partially blocked by tetraethylammonium (TEA)	Largely responsible for $V_{\rm rest}$
Voltage-gated Na* channel	I _{Na}	Rapidly activated by depolarization; becomes inactivated even if V _m remains depolarized	Tetrodotoin (TTX)	Produces rising phase of AP
Voltage-gated Ca ²⁺ channel	I_{Ck}	Activated by depolariza- tion but more slowly than Na ⁺ channel; inactivated as function of cytoplasmic $[Ca^{2+}]$ or V_m	Verapanil, D600, Co ²⁺ , Cd ²⁺ , Mn ²⁺ , Ni ²⁺ , La ³⁺	Produces slow depolariza- tion; allows Ca ¹⁺ to enter cell, where it can act as second messenger
Voltage-gated K* channel ("delayed rectifier")	T _{EN)}	Activated by depolariza- tion but more slowly than Na* channel; inactivated slowly and not completely if V _{in} remains depolarized	Intra- and extracellular TEA, amino pyridines	Carries current that rapidly repolarizes the membrane to terminate an AP
Ca ²⁺ -dependent K* channel	I _{kiCa}	Activated by depolariza- tion plus elevated cytoplasmic [Ca ²⁺], remains open as long at cytoplasmic [Ca ²⁺] is higher than normal	Estracellular TEA	Carries current that repo- larizes the cell following APs based on either Na ⁺ or Ca ²⁺ and that balances I_{C4} , thus limit- ing depolarizion by I_{C5} .

Hill et al. 2004, Fig. 11.12

-Refractory Periods

Silverthorn 2001. 2nd ed. Human Physiology. Prentice Hall

How would you make the membrane in the axon hillock/spike initiation zone more, or less, likely to send an AP?

23

4

(c) Subthreshold responses and action potentials

Stimulating current pulses

Membrane potential (mV)

-65

Hyperpolarizing current

Voltage threshold

Time (ms)

Depolarizing

current

Hill et al. 2004, Fig. 11.11

-Receptor potential is graded and decremental

-Magnitude of graded receptor potential determines frequency of APs (~all of the same size)

-Neurotransmitter Release

-Alternate between graded psps and all-ornone APs

	Graded Potential	Action Potential
Type of signal	Input signal	Conduction signal
Where occurs	Usually dendrites and cell body	Trigger zone through axon
Types of gated ion channels involved	Mechanically, chemically, or voltage-gated channels	Voltage-gated channels
Ions involved	Usually Na*, CI ⁺ , Ca ¹⁺	Na ⁺ and K ⁺
Type of signal	Depolarizing (e.g., Na") or hyperpolarizing (e.g., Cl")	Depolarizing
Strength of signal	Depends on initial stimulus; can be summed	Is always the same (all-or-none phenomena); cannot be summed
What initiates the signal	Entry of ions through channels	Above-threshold graded potential at th trigger zone
Unique characteristics	No minimum level required to initiate	Threshold stimulus required to initiate
	Two signals coming close together in time will sum	Refractory period: two signals too close together in time cannot sum Initial stimulus strength is indicated by frequency of a series of action potentia

Silverthorn 2001. 2nd ed. Human Physiology. Prentice Hall

Can't change membrane potential beyond *E*rev for a given ion(s) and its channels

Use Nernst to calculate for one ion species Goldman equation for multiple ions

ACh opens for K+ and Na+, so *E*rev between $E_{\rm K}$ and $E_{\rm Na}$

EPSP and IPSP

NT release via exocytosis: the role of Ca²⁺ 35

thorn 2001. 2nd ed. Human Physiology. Prentice Hall 50

Found 6-0 Formation of myelin (a) in the CAS, orgadized arXystes form myetin around portions of secretal intermution axions Mannysis contact both neurons and blood vessels, but do not form myelin. (b) During myelin formation in the peripheral nervous sys im, the Schwann cell wraps around the axion many times while its nucleus is pushed to outside of the myelin sheath. (c) A Schwan of forms myelin around a small segment of one axion.

-How increase conduction velocity?

1 – Diameter

2 - Insulation

-Long axons require insulation (support cells) -glial cells for myelination (fatty tissue) aka:

-Schwann cells in peripheral nerves -Oligodendrocytes in CNS

Silverthorn 2001. 2nd ed. Human Physiology. Prentice Hall

Fiber type

Table 6-1

Fiber type	Average axon diameter (µm)	Conduction velocity (m·s ^{-s})
Myelinated fibers		
Aα	18.5	42
Aβ	14.0	25
Aγ	11.0	17
В	Approximately 3.0	4.2
Unmyelinated fibers		
С	2.5	0.4 - 0.5

The diameter of frog axons and the presence or absence of myelination control the conduction velocity.

Multiple sclerosis caused by demyelination