

Eldon J. Braun
Department of Physiology
University of Arizona

Maintenance of the Internal Environment

- ❖ Osmoregulation means the maintenance of the homeostasis of internal environment.
- *What constitutes the internal environment?

Birds osmoregulated well

Birds inhabit all environments

Aquatic

Fresh water

Marine

Estuaries

Terrestrial

Polar

Temperate

Desert

In terms of osmoregulation, mammals are the unusual group

Kidneys are only osmoregulatory organ

Osmoregulation among other vertebrates

Fish, amphibians, reptiles, and birds

Multiple organs function in osmoregulation

ORGANS THAT CONTRIBUTE TO OSMOREGULATION IN VERTEBRATES

<u>Group</u>
Fish
Amphibians

Osmoregulatory Organs

Kidneys Gills

Bladder Intestine

Amphibians Kidneys

Gills

Bladder Skin

Intestine

Reptiles Kidneys

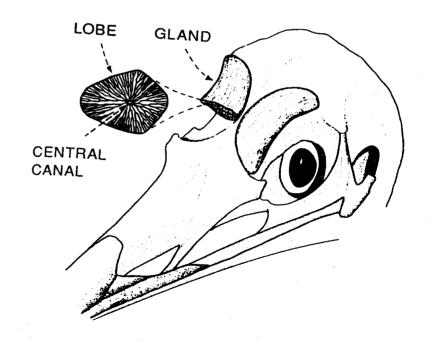
Salt Glands Intestine

Birds Kidneys

Salt Glands Intestines

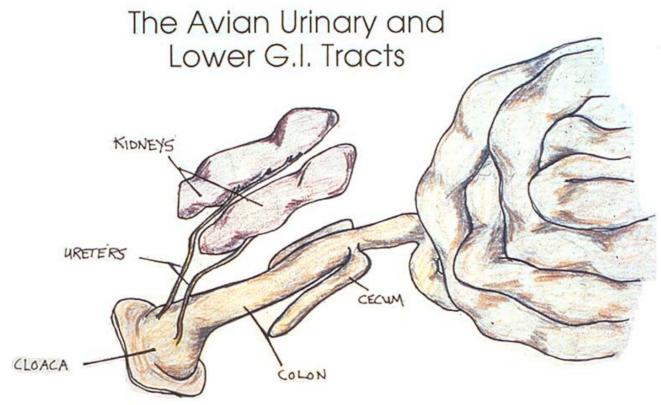
Mammals Kidneys

Osmoregulation by birds: Organs Involved

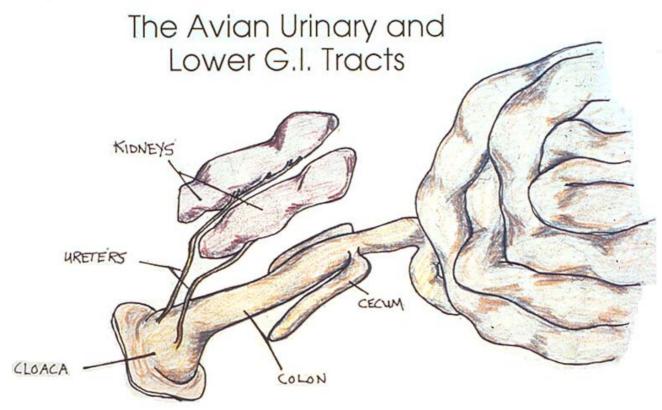

Kidneys

Lower gastrointestinal tract

Salt glands


Avian salt glands

The avian renal and gastrointestinal systems must function in concert in the regulation of ion and fluid balance.



As birds do not have urinary bladders, the ureteral urine is refluxed from the cloaca into colon

Evolutionary Rationale for this Type of Arrangement

(i.e. urine entering lower GI tract)

Excess mass of urinary bladder

- GFRs of Birds and Mammals Do Not Differ
- ❖ Fraction of Filtered Water Reabsorbed by Kidney
 - Less by Avian Kidney
 - Urine of Birds in Constant "Flux"
- Argument does not "hold water"

Urine to plasma osmolar ratio

How well kidneys of animals concentrate urine is Usually expressed as the ratio of the urine osmolality To the plasma osmolality.

Or simply the U/P_{osm}

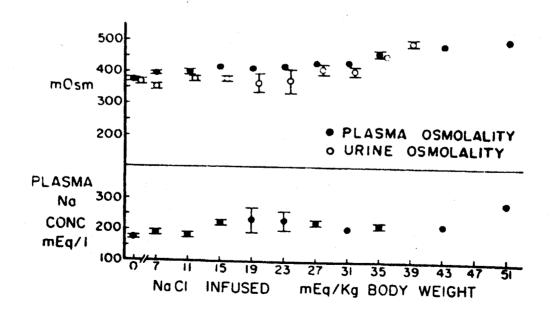
Birds or the avian kidney does not concentrate urine to a high degree

Maximum U/P_{osms} of some mammals

Values range from about 1 in the Mountain Beaver to ca. 25 in some of the small desert Rodents.

Humans U/P_{osm}?

Urine-to-Plasma Osmolar Ratios for Birds


	(U/P_{osm})
Ring-necked Pheasant	1.5
Senegal Dove	1.7
Savannah Sparrow	1.7
King Quail	1.8
White-crowned Sparrow	1.8
Domestic Fowl	2.0
Budgerigar	2.3
House Finch	2.4
Singing Honeyeater	2.4
Stubble Quail	2.6
Mean	2.05

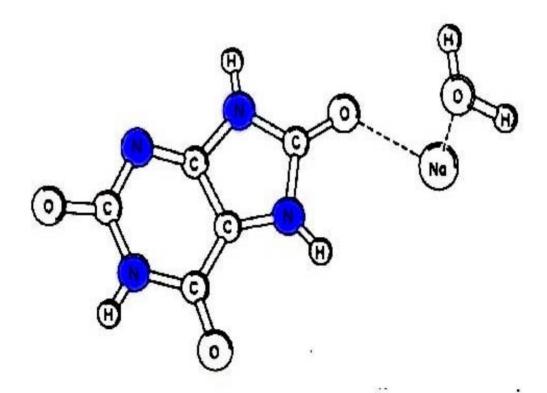
Comparison of U/P_{osms} between birds and mammals

- Not valid comparison to make
 - Urine in lower GI tract
 Effects of conc. fluid in lower GI tract
 - End products of nitrogen metabolism
 - Uric acid vs. ureaUrea ca. 50% of solutes in urineUric acid not in solution

Plasma and urine osmolality of Desert Quail

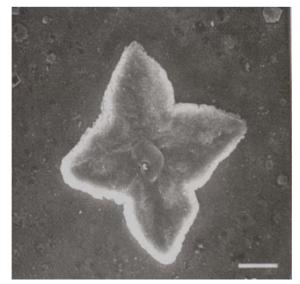
Nitrogen Excretion in Birds

Compound	Percent
Urea	4
Ammonium	20
Uric Acid	76



Solubilites of Nitrogen-Containing Compounds

Compound	Solubility (mmol/L)
Uric Acid	0.381
Ammonium Urate	3.21
Sodium Urate	8.32
Potassium Urate	14.75
Urea	16,650


Structure of Uric Acid

Evolutionary Rationale for this Type of Arrangement (i.e. urine entering lower GI tract)

Crystal of Uric Acid

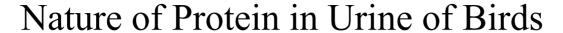
Evolutionary Rationale for this Type of Arrangement (i.e. urine entering lower GI tract)

Physical form of uric acid in avian urine

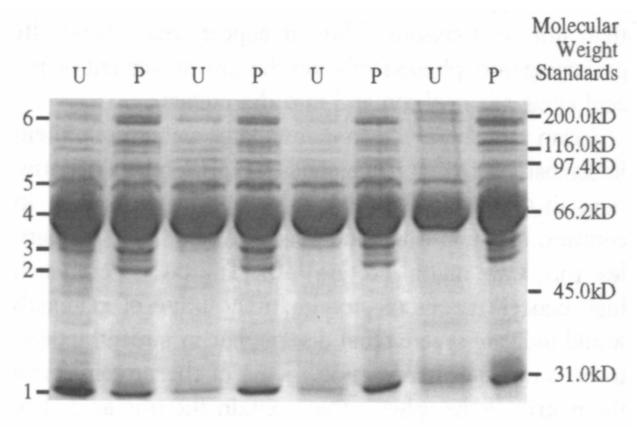
Small spherical structures

Spheres ca. 65% uric acid

Uric acid bound To a matrix protein



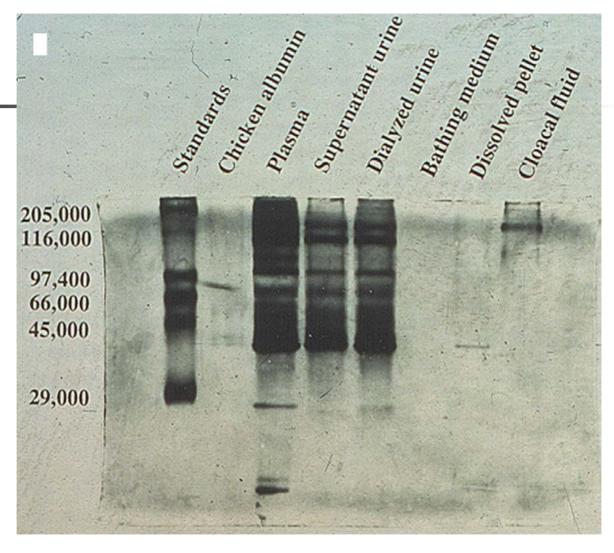
Prevention of Sphere Coalescence

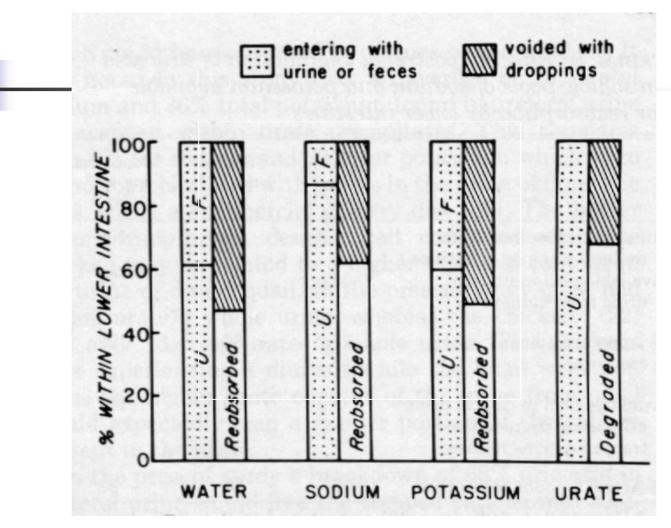

Protein in avian ureteral urine

Avian urine contains 5 mg/ml protein

Protein conc. in human urine ca. 0.05 mg/ml

SDS PAGE of avian Urine and plasma




Energy in Avian Ureteral Urine

	<u>Male</u>	<u>Female</u>
Kcal/Day	5.3	12.4
% BMR	5.4	11.3

SDS PAGE of Avian Excreted Fluid

Modification of Urine in Lower GI Tract of Birds

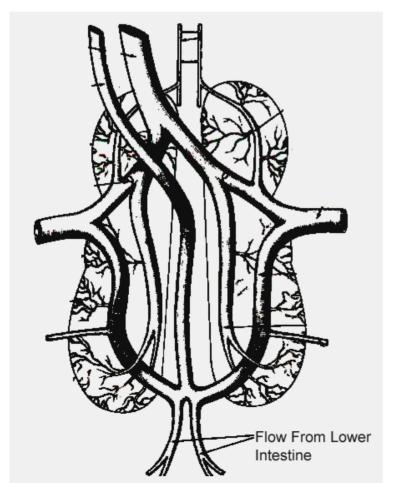
Degradation of Uric Acid in Lower GI Tract

- ❖ 68% of uric acid in ureteral urine
 - Bacterial action
 - Fate of liberated nitrogen
 - o Glutamic acid
 - ✓ Renal tubules--Buffer H ions
 - ✓ Gluconeogensis
 - ✓ Citric acid cycle
 - o Short chain volatile fatty acids

Products Formed From the Breakdown of Uric Acid in Avian Lower GI tract

77% of [15N]uric acid introduced into ceca of cockerels disappeared in 60 min

Labelled nitrogen appeared in plasma within glutamine


And nitrogen appeared as ammonia and rapidly absorbed

Where do these product go?

Karasawa, 1989

Vasculature Surrounding the Avian Kidney

Coccygomesenteric vein drains into renal portal system


Birds have a functional renal portal system

Akester

Use of glutamine by renal tubules (To buffer hydrogen ions)

Tubule Lumen Peritubule Side Cells Glutamine Na^+ H^+ Blood from Glutamine renal portal NH₃⁺ **◆** system NH_4^+

Possible Pathway for Utilization of Uric Acid

Also, deamination of glutamine produces ketoglutaric acid that can enter the krebs cycle