




1 http://eebweb.arizona.edu/eeb\_course\_websites.htm

Housekeeping, 18 February 2008

Upcoming Readings Today: Ch14 Wed 20 Feb: Ch14&15 LAB Wed 20 Feb: 4 readings on website Fri 22 Feb: no lecture, work on proposal Monday 25 Feb: Ch15, Ch17? Wed 27 Feb: Research Question Due Wed 27 Feb: Ch17 LAB Wed 27 Feb: muscle readings on website Fri 29 Feb: Ch17

Lab discussion leaders: 20 Feb 1pm - Virsheena, Mathew S. Arturo 3pm - Kat, Clif, Amber

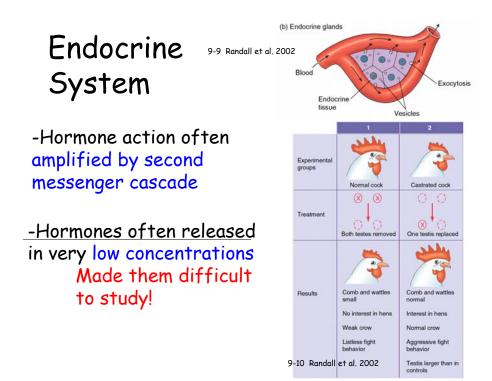
Lab discussion leaders: 27 Feb 1pm - Steve & Cassia 3pm - Kevin & Jennifer 2

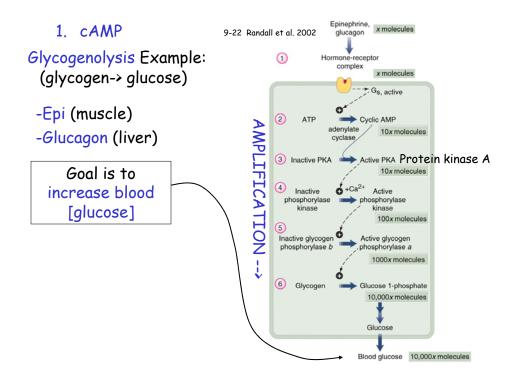
The Edges of Life Lecture Series

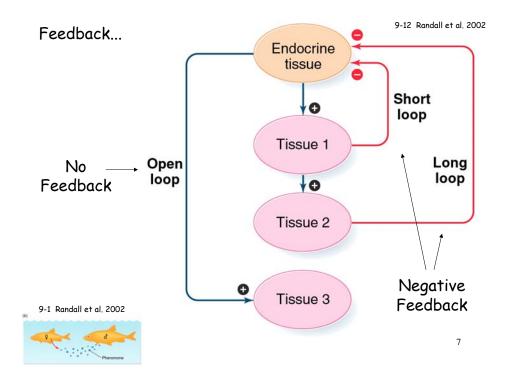
### The Edges of Life - 7pm at Centennial Hall

Wednesday, February 20

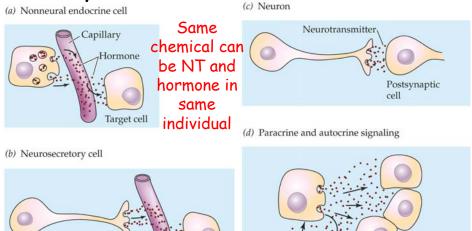
Life's Human Edge: Changing Perspectives on the End of Life Michael Gill, Associate Professor, Philosophy


Nothing looms with more certainty than the final edge of one's own life. But in fact, the edge between life and death is anything but clear. This lecture will address the attempts that have been made to define the line between life and death and will explore the biological, legal, ethical, and spiritual debates that have raged around that line.


Wednesday, March 5 Life's Technological Edge: The Singularity is Near: When Humans Transcend Biology Ray Kurzweil, *via Teleportec Teleporter* Founder, Chairman and Chief Executive Officer, Kurzweil Technologies Humanity is on the edge of a vast transformation, when what it means to be human will be both enriched and challenged. Inventor and futurist Ray Kurzweil will introduce this radically optimistic singularity, an era when we break our genetic shackles to create a nonbiological intelligence trillions of times more powerful than today. In this new world, humans will transcend biological limitations to achieve entirely new levels of progress and longevity. This lecture co-sponsored by: UA College of Engineering and UA College of Science


#### These do not count as physiology lectures. 3




Martin Wikelski, Princeton







# Endocrine and Nervous Systems Have Similarities



ANIMAL PHYSIOLOGY, Figure 10.2

Target cell

Hill et al. 2004, Fig 10.2

Autocrine action

on releasing cell

ANIMAL PHYSIOLOGY, Figure

Paracrine action

on neighboring

cells

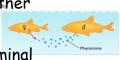
Chap 14. Endocrine System - Glands and Hormones

Secretions with consequences

All cells secrete, but Specialized secretory cells grouped into glands Secrete same specialized substance (e.g., hormone)

Nervous System neurotransmitter acts near and fast

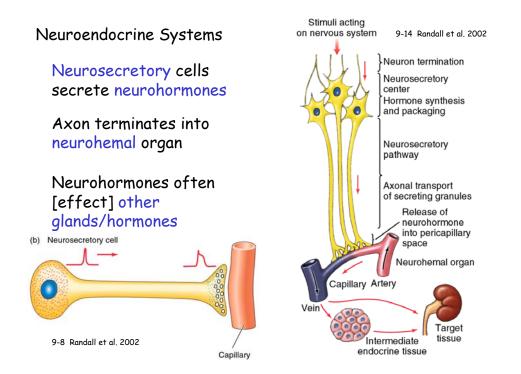
Other secretions, such as hormones, may act more distantly and over a longer time period


Categories of cellular secretions:

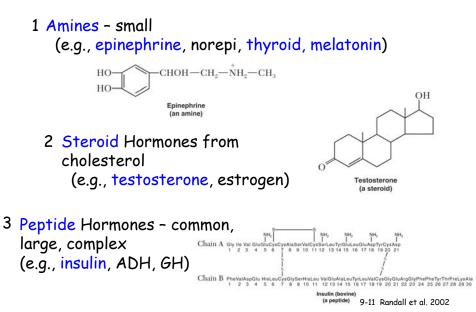
Autocrine - affect the secreting cell directly Paracrine - affect neighboring cells e.g., histamine and inflammation

Endocrine - release into bloodstream

Exocrine - release onto epithelial surface e.g., sweat onto skin, bile into digestive system


Pheromone - exocrine secretion to signal other individuals




Neuroendocrine - secretion from axon terminal into blood stream

Neurosecretory cells and Neurohormones control much of the endocrine system

10



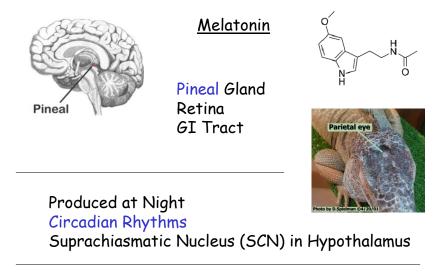
# Three Hormone Classes



#### TABLE 14.2 Peptide, steroid, and amine hormones

|                                      |                                                                                                         |                                                                                        | Amine hormones                                                                          |                                                                                        |                                                           |  |  |
|--------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------|--|--|
| Property                             | Peptides                                                                                                | Steroids                                                                               | Catecholamines                                                                          | Thyroid hormones                                                                       | Melatonin                                                 |  |  |
| Site of secretion                    | Most sites in Table 14.1,<br>except adrenal cortex<br>and medulla, thyroid<br>gland, and pineal gland   | Adrenal cortex,<br>gonads, and<br>placenta                                             | Adrenal medulla                                                                         | Thyroid gland                                                                          | Pineal gland                                              |  |  |
| Structure                            | Chains of amino acids                                                                                   | Derived from<br>cholesterol                                                            | Derived from<br>tyrosine                                                                | Derived from<br>tyrosine and iodine                                                    | Derived from<br>tryptophan                                |  |  |
| Solubility                           | Water-soluble                                                                                           | Lipid-soluble                                                                          | Water-soluble                                                                           | Lipid-soluble                                                                          | Water-soluble                                             |  |  |
| Synthesis and storage                | Synthesized at rough ER,<br>processed in Golgi<br>apparatus; stored in<br>vesicles in advance<br>of use | Synthesized on<br>demand in intracell-<br>ular compartments;<br>not stored             | Synthesized in the<br>cytoplasm and<br>stored in vesicles<br>("chromaffin<br>granules") | Made prior to use<br>and stored in a<br>colloid island<br>within the gland             | Synthesized in the<br>cytoplasm and<br>stored in vesicles |  |  |
| Secretion                            | Exocytosis                                                                                              | Simple diffusion<br>through cell<br>membrane                                           | Exocytosis                                                                              | Simple diffusion<br>through cell<br>membrane                                           | Exocytosis                                                |  |  |
| Transport                            | Dissolved in plasma; some<br>bound to carrier proteins                                                  | Bound to carrier<br>proteins                                                           | Dissolved in<br>plasma                                                                  | Bound to carrier<br>proteins                                                           | Dissolved in plasma                                       |  |  |
| Half-life                            | Minutes                                                                                                 | Hours                                                                                  | Seconds to<br>minutes                                                                   | Days                                                                                   | Minutes                                                   |  |  |
| Location of<br>receptor<br>molecules | Surface of target cell<br>membrane                                                                      | Cytoplasm or nucleus<br>(some steroids bind to<br>cell-surface receptors)              | Surface of<br>target cell<br>membrane                                                   | Nucleus                                                                                | Surface of target cell membrane                           |  |  |
| Action at<br>target cell             | Activate second-<br>messenger systems<br>or alter membrane<br>channels                                  | Alter gene expression;<br>activated genes<br>initiate transcription<br>and translation | Activate second-<br>messenger<br>systems                                                | Alter gene expression;<br>activated genes<br>initiate transcription<br>and translation | Activate second-<br>messenger<br>systems                  |  |  |
| Response of<br>target cell           | Change activity of<br>preexisting proteins,<br>some of which may<br>induce new protein<br>synthesis     | Synthesize new<br>proteins; some may<br>change activity of<br>preexisting proteins     | Change activity<br>of preexisting<br>proteins                                           | Synthesize new proteins                                                                | Change activity<br>of preexisting<br>proteins             |  |  |

Sources: After Sherwood 2004; Silverthorn 2004; and Widmaier, Raff, and Strang 2004.


Hill et al. 2004 ANIMAL PHYSIOLOGY, Table 14.2 © Singuer Associates. Inc.

Amines - small (e.g., epi, norepi, thyroid)



### Modified Amino Acids

- 1. catecholamines (epi, norepi, dopamine; tyrosine)
- 2. thyroid (lipid soluble; tyrosine)
- 3. melatonin (tryptophan)



Antioxidant Immune System Support Suppress libido? (LH, FSH)

Glandular Secretion Response to <u>stimulus</u>

> Hormone Neurotransmitter Action Potential etc. (e.g., osmolarity and ADH)



15

# Storage before Secretion

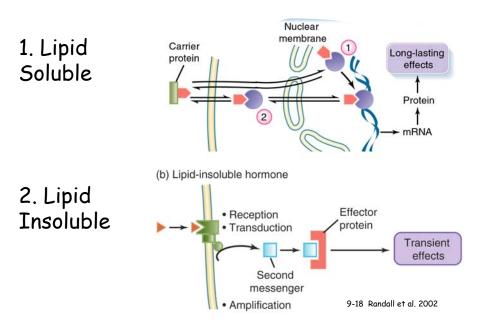
Large molecules easily stored because can't leave readily

Small molecules often stored bound to accessory proteins

Some molecules actively/continuosly taken into vesicles

Steroid hormones (lipid soluble) tend to leak out soon Hydrophobic steroid and thyroid hormones move in blood, bound to carrier proteins

TABLE 14.1 Summary of major blood-borne hormones in mammals (Part 1)


| Endocrine tissue | Hormone                            | Class of<br>molecule | Main functions                                                                                                                       |
|------------------|------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Adrenal cortex   | Aldosterone<br>(mineralocorticoid) | All steroids         | Stimulates Na reabsorption and<br>K secretion in kidney                                                                              |
|                  | Androgens                          |                      | Act on bone to cause growth spurt<br>at puberty; increase sex drive<br>in females by action on brain                                 |
|                  | Glucocorticoids                    |                      | Part of stress response; affect meta-<br>bolism of many tissues to increase<br>blood glucose and cause protein<br>and fat catabolism |
| Adrenal medulla  | Epinephrine and norepinephrine     | Catecholamines       | Part of stress response; influence<br>cardiovascular function and<br>organic metabolism of many<br>tissues                           |

Sources: After Bentley 1998; Henderson 2000; Schmidt-Nielsen 1997; Sherwood 2004; Silverthorn 2004; and Widmaier, Raff, and Strang 2004.

ETC...

Hill et al. 2004

ANIMAL PHYSIOLOGY, Table 14.1 (Part 1) © Sinauer Associates, Inc.



(a) Lipid-soluble hormone

# Hormone ACTION! Where are the receptors?

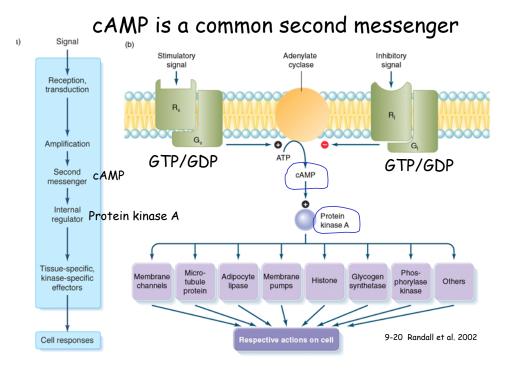
## 1. Lipid Soluble

- Steroid and Thyroid Hormones (~long-lived)
- Through Membrane
- Bind cytoplasmic receptors, then to Nucleus
- Directly affect transcription (therefore long-term)

## 2. Lipid Insoluble

- Bind cell-surface receptors
- Often one or more 2<sup>nd</sup> messengers
- Amplification
- ~ Rapid, short-duration responses

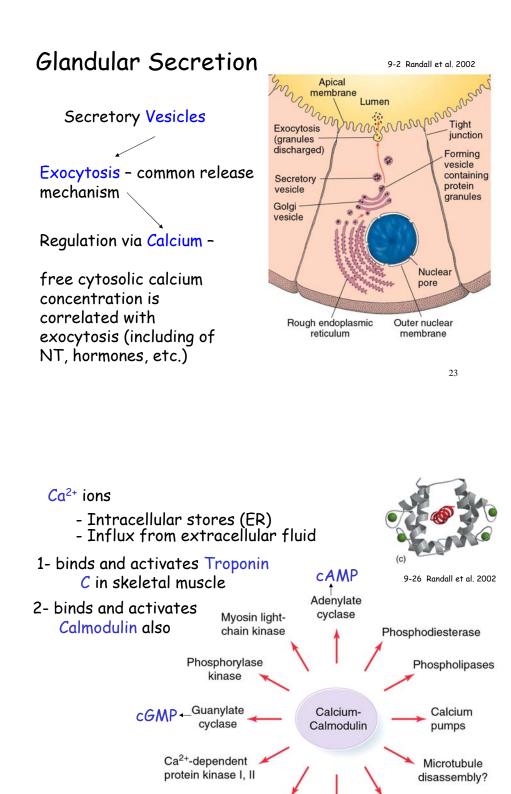
Hormone ACTION! (receptors etc.)


2. Lipid Insoluble Hormones and Intracellular Signaling

A few receptors with direct catalytic activity, but most via 2<sup>nd</sup> messengers :

Possible 2<sup>nd</sup> messengers:

- 1. cAMP, cGMP (cyclic nucleotide monophosphates)
- 2. IP<sub>3</sub>, DAG (diacylglycerol; inositol phospholipids)
- 3. Ca<sup>2+</sup> ions


General Model of Hormone Binding and Intracellular Signaling: 19



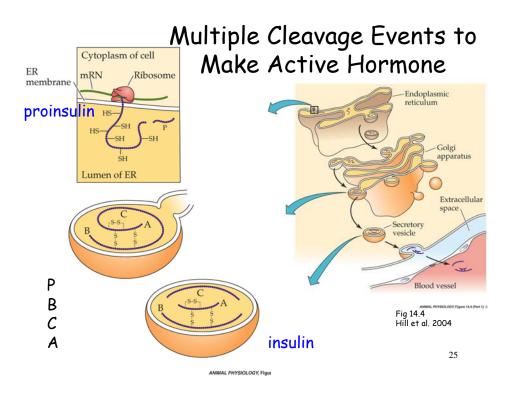
#### Randall et al. 2002 *Table 9-6* Some hormone-induced responses mediated by the cAMP pathway

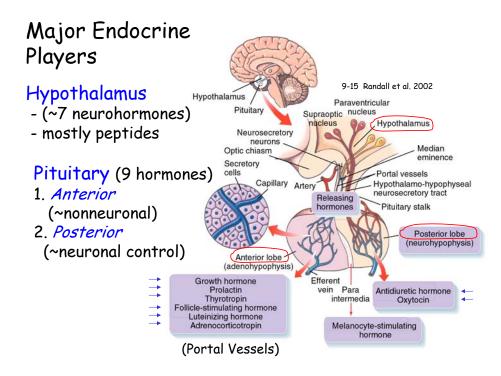
| Signal                               | Tissue                   | Cellular response                             |  |  |  |  |
|--------------------------------------|--------------------------|-----------------------------------------------|--|--|--|--|
| Stimulatory                          |                          |                                               |  |  |  |  |
| Epinephrine<br>(β-adrenoreceptors)   | Skeletal muscle          | Breakdown of glycogen                         |  |  |  |  |
|                                      | Fat cells                | Increased breakdown of lipids                 |  |  |  |  |
|                                      | Heart                    | Increased heart rate and force of contraction |  |  |  |  |
|                                      | Intestine                | Fluid secretion                               |  |  |  |  |
|                                      | Smooth muscle            | Relaxation                                    |  |  |  |  |
| Thyroid-stimulating<br>hormone (TSH) | Thyroid gland            | Thyroxine secretion                           |  |  |  |  |
| ADH (vasopressin)                    | Kidney                   | Reabsorption of water                         |  |  |  |  |
| Glucagon                             | Liver                    | Breakdown of glycogen                         |  |  |  |  |
| Serotonin                            | Salivary gland (blowfly) | Fluid secretion                               |  |  |  |  |
| Prostaglandin $I_2$                  | Blood platelets          | Inhibition of aggregation and secretion       |  |  |  |  |
| Inhibitory                           |                          |                                               |  |  |  |  |
| Epinephrine                          |                          |                                               |  |  |  |  |
| $(\alpha_2$ -adrenoreceptors)        | Blood platelets          | Stimulation of aggregation and secretion      |  |  |  |  |
|                                      | Fat cells                | Decreased lipid breakdown                     |  |  |  |  |
| Adenosine                            | Fat cells                | Decreased lipid breakdown                     |  |  |  |  |

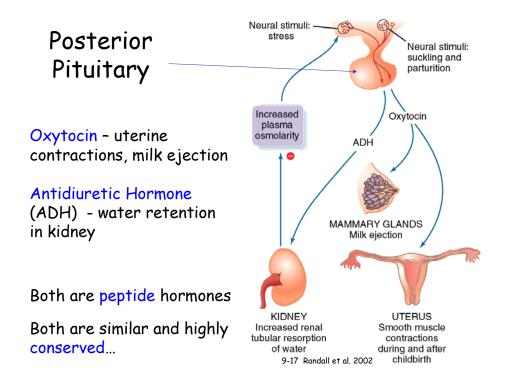
Source: Berridge, 1985.



Neurotransmitter


release?


9-27 Randall et al. 2002


Membrane

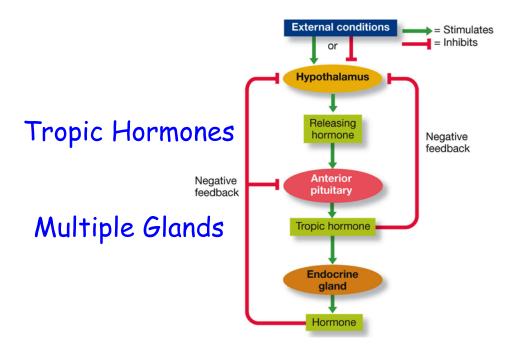
phosphorylation

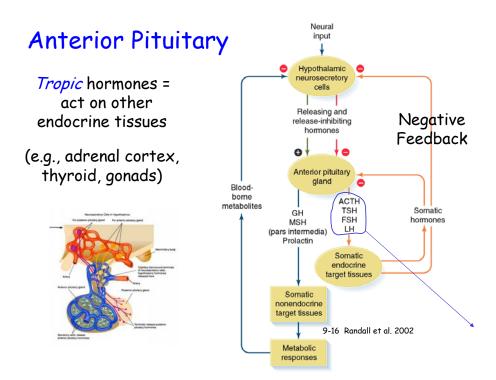
Others








# **Posterior Pituitary**

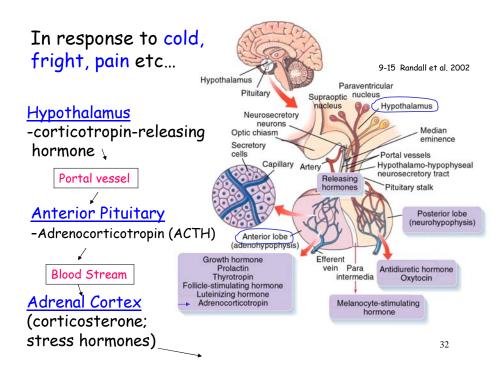

Randall et al. 2002 *Table 9-4* Variant forms of neurohypophyseal nonapeptide hormones

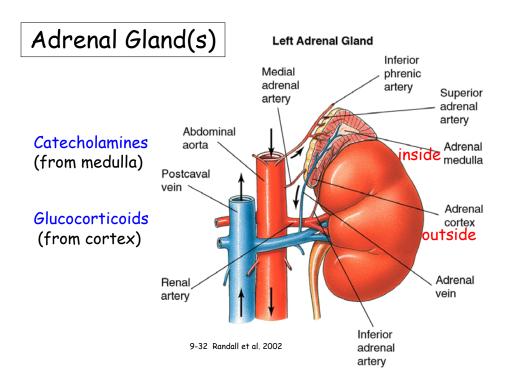
|                      | Positions of amino acid residues <sup>®</sup> |       |        |       |       |       |       |      |         |                   |                                      |  |
|----------------------|-----------------------------------------------|-------|--------|-------|-------|-------|-------|------|---------|-------------------|--------------------------------------|--|
| Peptide              | 1                                             | 2     | 3 4    |       | 5 6   |       | 7 8   |      | 9       |                   | Animal group                         |  |
| Lysine vasopressin   | Cys-                                          | -Tyr- | Phe    | -Gln- | -Asn- | -Cys- | -Pro- | Lys  | -Gly-(  | NH <sub>2</sub> ) | Pigs and relatives                   |  |
| Arginine vasopressin | Cys-                                          | -Tyr- | Phe    | -Gln- | -Asn- | -Cys- | -Pro- | Arg  | -Gly-(  | NH <sub>2</sub> ) | Mammals ADH                          |  |
| Oxytocin             | Cys-                                          | -Tyr- | -lle · | -Gln- | -Asn- | -Cys- | -Pro- | Leu  | -Gly-(  | NH <sub>2</sub> ) | Mammals                              |  |
| Arginine vasotocin   | Cys-                                          | -Tyr- | -lle · | -Gln- | -Asn- | -Cys- | -Pro- | Arg  | -Gly-(i | NH <sub>2</sub> ) | Reptiles, fishes, and birds          |  |
| Isotocin             | Cys-                                          | -Tyr- | -lle   | Ser   | -Asn- | -Cys- | -Pro- | lle  | -Gly-() | $NH_2$ )          | Some teleosts                        |  |
| Mesotocin            | Cys-                                          | -Tyr- | -lle · | -Gln- | -Asn- | -Cys- | -Pro- | lle  | -Gly-(  | NH <sub>2</sub> ) | Reptiles, amphibians, and lungfishes |  |
| Glumitocin           | Cys-                                          | -Tyr- | -lle   | Ser   | -Asn- | -Cys- | -Pro- | -Gln | -Gly-() | NH <sub>2</sub> ) | Some elasmobranchs                   |  |

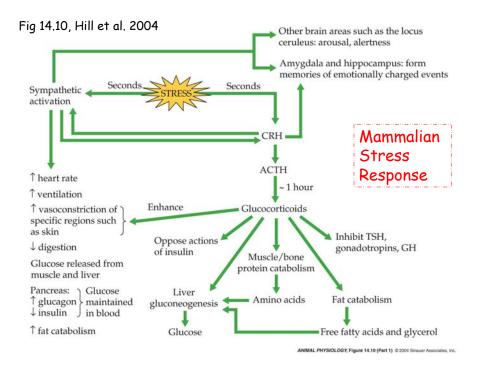
 $^{\circ} The cysteine residues in positions 1 and 6 of each peptide are bridged by a disulfide bond. Source: Frieden and Lipner, 1971.$ 

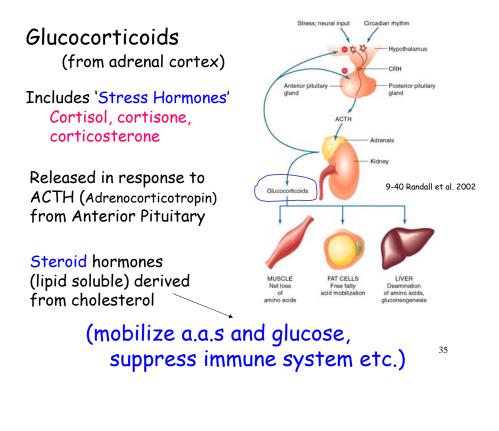
# Similar, highly conserved peptide hormones

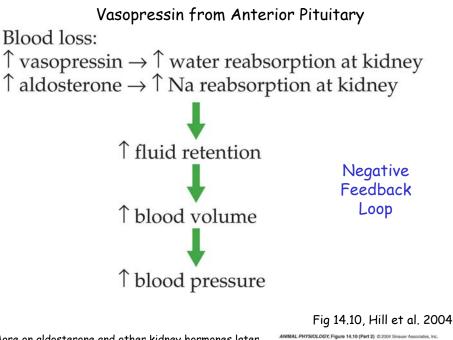






# **Tropic Hormones of Anterior Pituitary**


| Table 9-3 | Tropic | hormones | of the | anterior | pituitary | gland |
|-----------|--------|----------|--------|----------|-----------|-------|
|-----------|--------|----------|--------|----------|-----------|-------|


| Hormone                                      | Structure    | Target tissue                                                                         | Primary action in mammals                                                                                                                                                                                               | Regulation*                                                                                |  |
|----------------------------------------------|--------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--|
| drenocorticotropic<br>hormone (ACTH)         |              | Adrenal cortex                                                                        | Increases synthesis and<br>secretion of<br>steroid hormones<br>by adrenal cortex                                                                                                                                        | Cortical-releasing<br>hormone (CRH)<br>stimulates release;<br>ACTH slows release<br>of CRH |  |
| Follicle-stimulating<br>hormone (FSH)<br>FSH | Glycoprotein | Ovarian follicles<br>(female);<br>seminiferous<br>tubules<br>(male)                   | In female, stimulates<br>maturation of ovarian<br>follicles; in male,<br>increases sperm<br>production                                                                                                                  | GnRH stimulates release;<br>inhibin and steroid sex<br>hormones inhibit<br>release         |  |
| Luteinizing hormone<br>(LH)                  | Glycoprotein | Ovarian interstitial<br>cells (female);<br>testicular<br>interstitial<br>cells (male) | In female, induces final<br>maturation of ovarian follicles,<br>estrogen secretion, ovulation,<br>corpus luteum formation, and<br>progesterone secretion;<br>in male, increases synthesis<br>and secretion of androgens | GnRH stimulates release;<br>inhibin and steroid<br>sex hormones<br>inhibit release         |  |
| Thyroid-stimulating<br>hormone (TSH)         | Glycoprotein | Thyroid gland                                                                         | Increases synthesis and<br>secretion of thyroid<br>hormones                                                                                                                                                             | TRH induces secretion;<br>thyroid hormones and<br>somatostatin slow<br>release             |  |



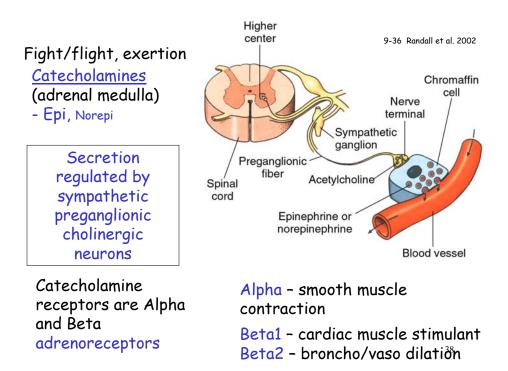












## Water and Electrolyte Balance Hormones

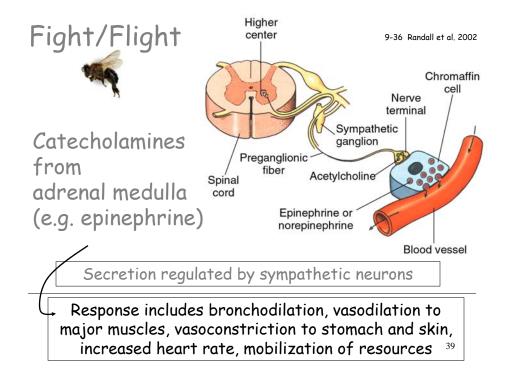

#### Randall et al. 2002

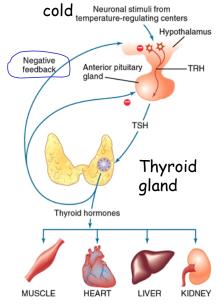
Table 9-8 Mammalian hormones involved in regulating water and electrolyte balance

| Hormone                                    | Tissue of origin                     | Structure   | Target tissue                | Primary action                                                                                                                                                            | osmotic pressure                                          |  |
|--------------------------------------------|--------------------------------------|-------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--|
| Antidiuretic hormone<br>(ADH, vasopressin) | Posterior pituitary                  | Nonapeptide | Kidneys                      | Increases water<br>reabsorption CAMP pathway                                                                                                                              |                                                           |  |
| Post. Pit., signal from                    | n Hypothal                           |             |                              |                                                                                                                                                                           | or decreased<br>blood volume<br>stimulates release        |  |
| Atrial natriuretic<br>peptide (ANP)        | Heart (atrium)                       | Peptide     | Kidneys                      | Reduces Na <sup>+</sup> and water<br>reabsorption                                                                                                                         | Increased venous<br>pressure stimulates release           |  |
| Calcitonin                                 | Thyroid<br>(parafollicular<br>cells) | Peptide     | Bones, kidneys               | Decreases release of $Ca^{2+}$<br>from bone; increases renal<br>$Ca^{2+}$ and $PO_4{}^{3-}$ excretion                                                                     | Increased plasma Ca <sup>2+</sup><br>stimulates secretion |  |
| Mineralocorticoids<br>(e.g., aldosterone)  | Adrenal cortex                       | Steroid     | Distal kidney<br>tubules     | Promotes reabsorption<br>of Na <sup>+</sup> from urinary filtrate                                                                                                         | Angiotensin II<br>stimulates secretion                    |  |
| Parathyroid hormone<br>(PTH)               | Parathyroid gland                    | Peptide     | Bones, kidneys,<br>intestine | Increases release of Ca <sup>2+</sup><br>from bone; with calcitriol<br>increases intestinal Ca <sup>2+</sup><br>absorption; decreases renal<br>Ca <sup>2+</sup> excretion | Decreased plasma Ca <sup>2+</sup><br>stimulates secretion |  |

Calcitonin decrease Ca\*\* in blood; PTH increase Ca\*\* in blood






# Thyroid Hormone (aka Thyroxine)

 $T_3$  and  $T_4$  (# of iodines)

lipid soluble

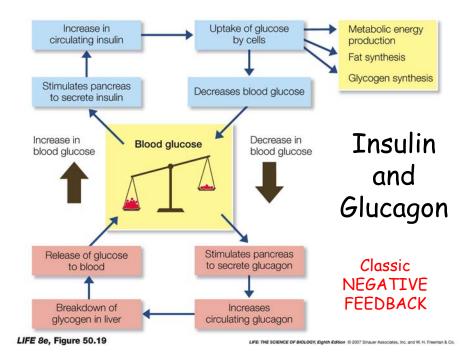
Development, maturation, protein synthesis, metabolism

Being cold can stimulate



Increased oxygen consumption and heat production 9-42 Randall et al. 2002  $^{\rm +v}$ 

# Thyroxine and Thyroid Gland


Hypothyroid Goiter (e.g. not enough iodine in diet)



Hyperthyroid Goiter

(e.g. 1. thyroxine receptors on hypothalamus or anterior pituitary don't work,

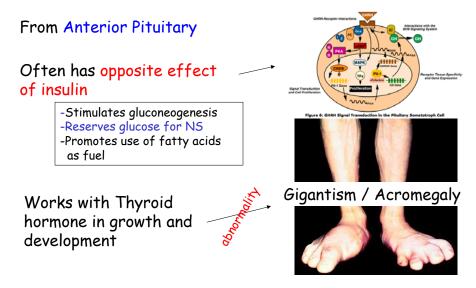
or

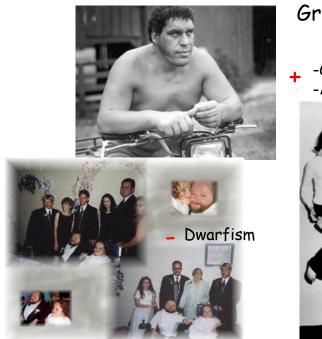


# Insulin and Glucagon Regulate blood [glucose]

- Insulin in response to high [glu]-
- Glucagon in response to low [glu]

Both from pancreatic gland: Insulin from beta cells Glucagon from alpha cells


Leads to glucose uptake into tissues ETC.


Type 1 Diabetes -when beta cells decrease insulin production Type 2 Diabetes -when insulin receptor signal pathway defective Causes glycogenolysis and glucose release from tissues (liver, muscles)



# Growth Hormone

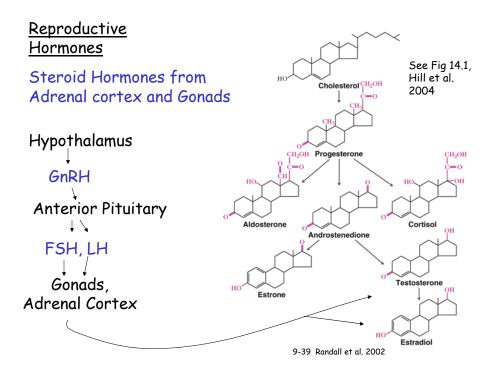
Metabolic and developmental effects





# Growth Hormone

-Gigantism -Acromegaly

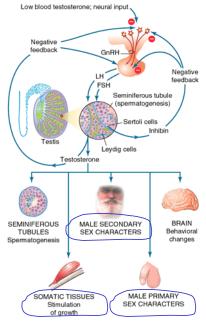



# Vertebrate Reproduction

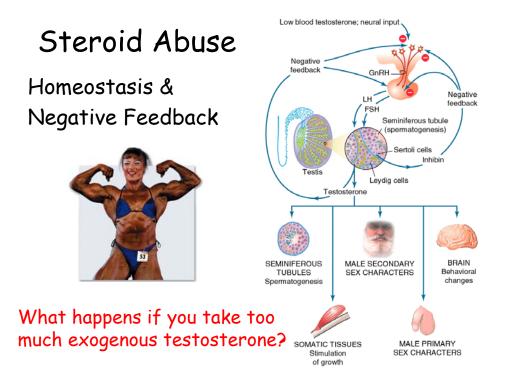




Asexual Parthenogenetic Whiptail Lizards




## Male Sex Hormones


Testosterone and other androgens

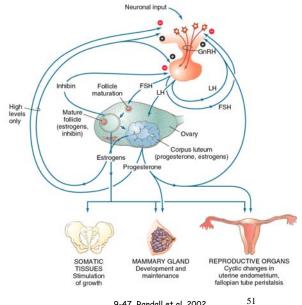
Released from Leydig Cells in response to LH, FSH

FSH binding to Sertoli cells stimulates spermatogenesis

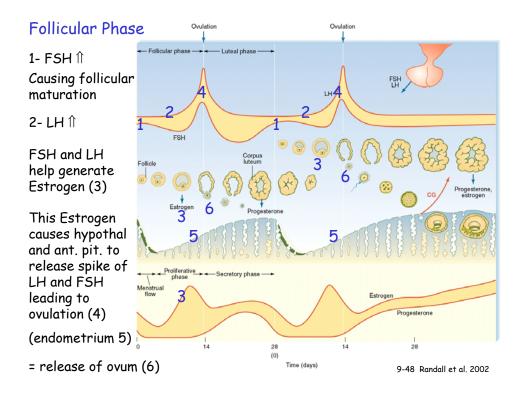


9-46 Randall et al. 2002




### Female Sex Hormones

## Estrogens


Ova created and stored before birth (mammals and birds)

## Repro cycle in 2 phases: Follicular and Luteal

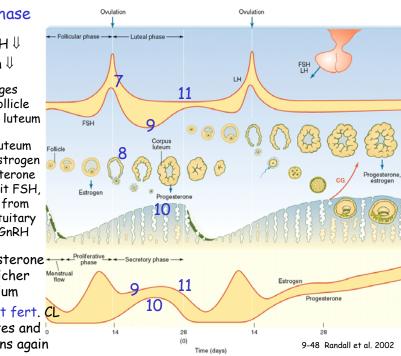
**FSH** stimulates beginning of follicular phase -> development of ovarian follicles



9-47 Randall et al. 2002



### Luteal Phase


7- FSH, LH ↓ Estrogen  $\Downarrow$ 

8- LH changes ruptured follicle into corpus luteum

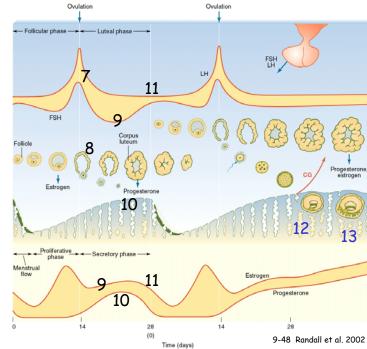
9- corpus luteum secretes estrogen and progesterone which inhibit FSH, LH release from anterior pituitary by slowing GnRH

10- progesterone Menst leads to richer endometrium

11- without fert. CL degenerates and 🖟 cycle begins again



## Luteal Phase


12- with fert. Chorionic gonadotropin maintains CL, maintaining high levels of estrogen and progesterone; maintaining endometrium; follicular development inhibited

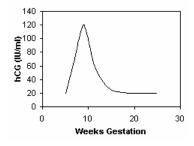
13- Placenta

takes over

production

hormone

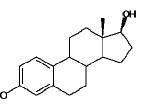



Dear Cecil:

I just hit 40 and still have an unanswered question from my teens that has always bothered me. Aerosmith in "Sweet Emotion" sings about being accused of impregnating a girl. At the end of the verse they sing, "can't catch me 'cause the rabbit done died," referring to a pregnancy test. Arguments start over just what this test entails. Most say the bunny will die, but can't agree as to why. Some say the rabbit will always die because they kill it before they take its blood (which seems pretty dumb). Some say they inject it with some fluid taken from the woman and it dies a horrible, convulsive death. And some say they have to dissect the rabbit after it has been injected. This was before those home test kits, but wasn't there a better way? --Joe Shredl, Colonial Heights, Virginia

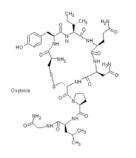
55











# Birth Control Pills?

Progesterone and Estradiol – mimic early pregnancy and inhibit ovulation Hor



# Parturition (Birth)

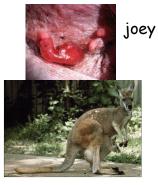
Oxytocin released in response to cervical stretch Oxytocin causes uterine smooth muscle contractions





Positive Feedback Loop

57


## Lactation

Decreased progesterone levels and presence of prolactin (milk production) and oxytocin (milk ejection) and other hormones

Antibodies Vitamins

Mechanosensory feedback

Dopamine inhibits prolactin secretion



marsupial

Randall et al. 2002 *Table 9-9* Important mammalian reproductive hormones

| Hormone                      | Tissue of origin                                      | Structure   | Target tissue                      | Primary action                                                                                                                        | Regulation                                                                                                                                                |
|------------------------------|-------------------------------------------------------|-------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Primary sex ho               | rmones                                                |             |                                    |                                                                                                                                       |                                                                                                                                                           |
| Estradiol-17β<br>(estrogens) | Ovarian follicle,<br>corpus luteum,<br>adrenal cortex | Steroid     | Most tissues                       | Promotes development and<br>maintenance of female<br>characteristics and behavior,<br>oocyte maturation, and<br>uterine proliferation | Increased FSH and LH<br>levels stimulate secretion                                                                                                        |
| Progesterone                 | Corpus luteum,<br>adrenal cortex                      | Steroid     | Uterus,<br>mammary<br>glands       | Maintains uterine secretion;<br>stimulates mammary<br>duct formation                                                                  | Increased LH and prolactin levels stimulate secretion                                                                                                     |
| Testosterone<br>(androgens)  | Testes<br>(Leydig cells),<br>adrenal cortex           | Steroid     | Most tissues                       | Promotes development and<br>maintenance of male<br>characteristics and behavior<br>and spermatogenesis                                | Increased LH level stimulates<br>secretion                                                                                                                |
| Other Hormon                 | es                                                    |             |                                    |                                                                                                                                       |                                                                                                                                                           |
| Oxytocin                     | Posterior pituitary                                   | Nonapeptide | Uterus,<br>mammary<br>glands       | Promotes smooth muscle<br>contraction and milk ejection                                                                               | Cervical distention and suckling<br>stimulate release; high<br>progesterone inhibits release                                                              |
| Prolactin (PL)               | Anterior pituitary                                    | Peptide     | Mammary glands<br>(alveolar cells) | Increases synthesis of milk<br>proteins and growth of<br>mammary glands; elicits<br>maternal behavior                                 | Continuous secretion of<br>PL-inhibiting hormone (PIH)<br>normally blocks release;<br>increased estrogen and<br>decreased PIH secretion<br>permit release |