
Lecture 14&15 18&20 Feb 2008	
Vertebrate Physiology ECOL 437 (MCB/VetSci 437)	Experiment
Univ. of Arizona, spring 2008 Kevin Bonine & Kevin Oh	Treatment
Kevin Bonine & Kevin On	
 Endocrine Physiology (Ch14) Reproductive Physiology (Ch15) 	Pasada

The Edges of Life Lecture Series

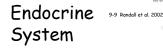
1

http://eebweb.arizona.edu/eeb_course_websites.htm

Housekeeping, 18 February 2008

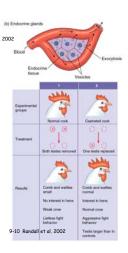
Upcoming Readings Today: Ch14 Wed 20 Feb: Ch14&15 LAB Wed 20 Feb: 4 readings on website Fri 22 Feb: no lecture, work on proposal Monday 25 Feb: Ch15, Ch17? Wed 27 Feb: Research Question Due Wed 27 Feb: Ch17 LAB Wed 27 Feb: muscle readings on website Fri 29 Feb: Ch17 Lab discussion leaders: 20 Feb

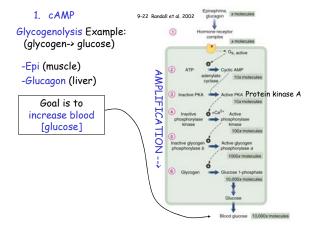
1pm - Virsheena, Mathew S. Arturo 3pm - Kat, Clif, Amber

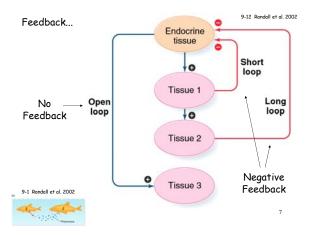

The Edges of Life - 7pm at Centennial Hall

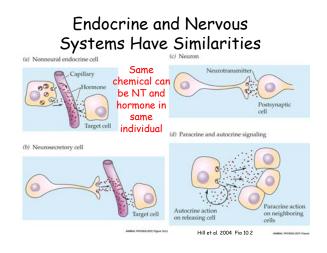
Wednesday, February 20 Life's Human Edge: Changing Perspectives on the End of Life Michael Gill, Associate Professor, Philosophy Nothing looms with more certainty than the final edge of one's own life. But in fact, the edge between life and death is anything but clear. This lecture will address the attempts that have been made to define the line between life and death and will explore the biological, legal, ethical, and spiritual debates that have raged around that line.

Wednesday, March 5 Life's Technological Edge: The Singularity is Near: When Humans Transcend Biology Ray Kurzweil, *via Teleporter Teleporter* Founder, Chairman and Chief Executive Officer, Kurzweil Technologies Humanity is on the edge of a vast transformation, when what it means to be human will be both enriched and challenged. Inventor and futurist Ray, Kurzweil will introduce this radically optimistic singularity, an era when we break our genetic shackles to create a nonbiological intelligence trillions of times more powerful than today. In this new world, humans will transcend biological limitations to achieve entirely new levels of progress and longevity. *This lecture co-sponsored by: UA College of Engineering and UA College of Science*


These do not count as physiology lectures. 3






-Hormone action often amplified by second messenger cascade

-Hormones often released in very low concentrations Made them difficult to study!

Chap 14. Endocrine System - Glands and Hormones

Secretions with consequences

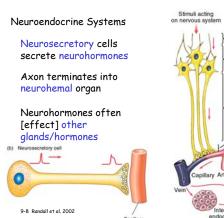
All cells secrete, but Specialized secretory cells grouped into glands

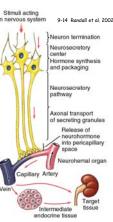
Secrete same specialized substance (e.g., hormone)

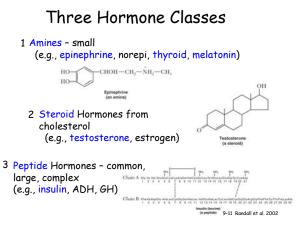
Nervous System neurotransmitter acts near and fast

Other secretions, such as hormones, may act more distantly and over a longer time period

Categories of cellular secretions:


Autocrine - affect the secreting cell directly Paracrine - affect neighboring cells e.g., histamine and inflammation


Endocrine - release into bloodstream


Exocrine - release onto epithelial surface e.g., sweat onto skin, bile into digestive system

Pheromone - exocrine secretion to signal other individuals Neuroendocrine - secretion from axon terminal into blood stream

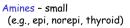
Neurosecretory cells and Neurohormones control much of the endocrine system

			Amine hormones				
Property	Peptides	Steroids	Catecholamines	Thyroid harmones	Melatonin		
Site of secretion	Most sites in Table 14.1, except adrenal cortes and medulla, thyroid gland, and pineal gland	Advenal cortex, gonads, and glacenta	Adversal medialla	Thyroid gland	Pineal gland		
Structure	Ohains of amino acids	Derived from cholesterol	Derived from tyrosine	Derived from Tytosine and iodine	Derived from tryptophan		
Solubility	Water-soluble	Lipid-soluble	Water-soluble	Lipid-soluble	Water-soluble		
Synthesis and storage	Synthesized at rough ER, processed in Golgi apparatus, stored in vesicles in advance of use	Synthesized on demand in intracell- s/ar compartments; not stored	Synthesized in the cytoplasm and stored in vesicles ("chromattin granules")	Made prior to use and stored in a colloid island within the gland	Synthesized in the cytoplasm and stored in vesicles		
Secretion	Executoria	Simple diffusion through cell membrane	Exocytosis	Simple diffusion through cell membrane	Exocytosis		
Transport	Dissolved in plasma; some bound to carrier proteins	Bound to carrier proteins	Dissolved in plasma	Bound to carrier proteins	Dissolved in plasm		
Half-life	Minutes	Hours	Seconds to minutes	Days	Minutes		
Location of receptor molecules	Surface of target cell membrane	Cytoplasm or nucleus (some steroids bind to cell-surface receptors)	Surface of target cell membrane	Nucleus	Surface of target cell membrane		
Action at target cell	Activate second- messenger systems or alter membrane channels	After gene expression; activated genes initiate transcription and translation	Activate second- mesunger systems	After gene expression; activated genes initiate transcription and translation	Activate second- messanger systems		
Response of target cell	Change activity of preexisting proteins, some of which may induce new protein surflyesis	Synthesize new proteins; some may change activity of preexisting proteins	Change activity of preexisting proteins	Synthesize new proteins	Change activity of preexisting proteins		

<u>Melatonin</u>

Pineal Gland

Suprachiasmatic Nucleus (SCN) in Hypothalamus

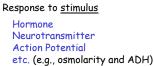

Retina

Produced at Night Circadian Rhythms

Immune System Support Suppress libido? (LH, FSH)

Antioxidant

GI Tract

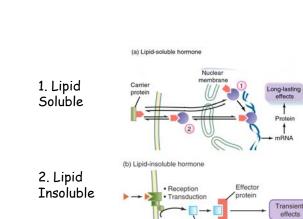


Modified Amino Acids 1. catecholamines (epi, norepi, dopamine; tyrosine) 2. thyroid (lipid soluble; tyrosine)

3. melatonin (tryptophan)

15

14


Storage before Secretion

Glandular Secretion

Large molecules easily stored because can't leave readily

Small molecules often stored bound to accessory proteins Some molecules actively/continuosly taken into vesicles Steroid hormones (lipid soluble) tend to leak out soon

Hydrophobic steroid and thyroid hormones move in blood, bound to carrier proteins 16

Second

messenge Amplification

9-18 Randall et al. 2002

TARIE 14 1	Summary of major blood borne bormones in mammals (Part 1)	

Endocrine tissue	Hormone	Class of molecule	Main functions
Adrenal cortex	Aldosterone (mineralocorticoid)	All steroids	Stimulates Na reabsorption and K secretion in kidney
	Androgens		Act on bone to cause growth spurt at puberty; increase sex drive in females by action on brain
	Glucocorticoids		Part of stress response; affect meta- bolism of many tissues to increase blood glucose and cause protein and fat catabolism
Adrenal medulla	Epinephrine and norepinephrine	Catecholamines	Part of stress response; influence cardiovascular function and organic metabolism of many tissues

ETC...

Hill et al. 2004

Hormone ACTION! Where are the receptors?

- 1. Lipid Soluble
 - Steroid and Thyroid Hormones (~long-lived)
 - Through Membrane
 - Bind cytoplasmic receptors, then to Nucleus
 - Directly affect transcription (therefore long-term)

2. Lipid Insoluble

- Bind cell-surface receptors
- Often one or more 2nd messengers
- Amplification
- ~ Rapid, short-duration responses

Hormone ACTION! (receptors etc.)

2. Lipid Insoluble Hormones and Intracellular Signaling

A few receptors with direct catalytic activity, but most via 2^{nd} messengers :

Possible 2nd messengers:

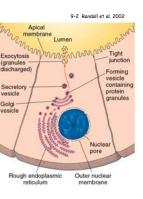
- 1. cAMP, cGMP (cyclic nucleotide monophosphates)
- 2. IP₃, DAG (diacylglycerol; inositol phospholipids)
- 3. Ca²⁺ ions

General Model of Hormone Binding and Intracellular Signaling:

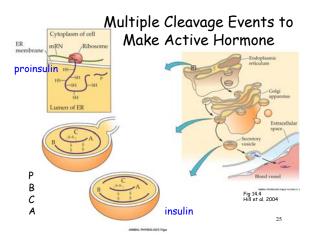
camponies a common second messenger

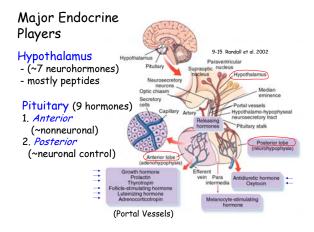
Randall et al. 2002 Table 9-6 Some hormone-induced responses mediated by the cAMP pathway

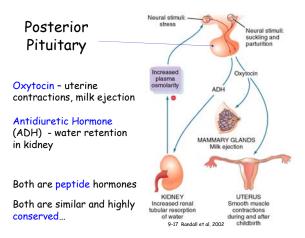
Signal	Tissue	Cellular response
Stimulatory		
Epinephrine (β-adrenoreceptors)	Skeletal muscle	Breakdown of glycogen
	Fat cells	Increased breakdown of lipids
	Heart	Increased heart rate and force of contraction
	Intestine	Fluid secretion
	Smooth muscle	Relaxation
Thyroid-stimulating hormone (TSH)	Thyroid gland	Thyroxine secretion
ADH (vasopressin)	Kidney	Reabsorption of water
Glucagon	Liver	Breakdown of glycogen
Serotonin	Salivary gland (blowfly)	Fluid secretion
Prostaglandin I ₂	Blood platelets	Inhibition of aggregation and secretion
Inhibitory		
Epinephrine		
$(\alpha_2$ -adrenoreceptors)	Blood platelets Fat cells	Stimulation of aggregation and secretion Decreased lipid breakdown
Adenosine	Fat cells	Decreased lipid breakdown


Glandular Secretion

Secretory Vesicles

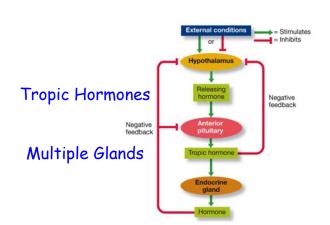

Exocytosis - common release mechanism

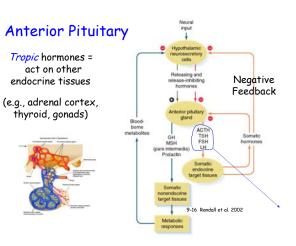

Regulation via Calcium -


free cytosolic calcium concentration is correlated with exocytosis (including of NT, hormones, etc.)

23

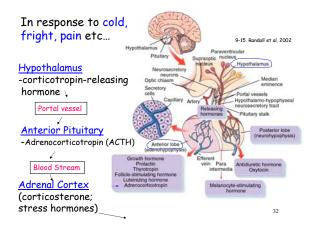
Posterior	Pituitary
-----------	-----------

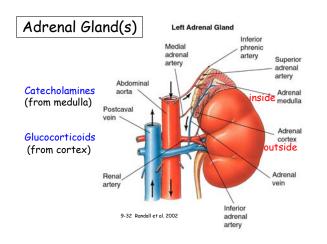


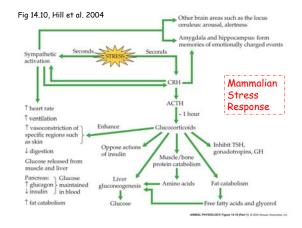

Randall et al. 2002 Table 9-4 Variant forms of neurohypophyseal nonapeptide hormo

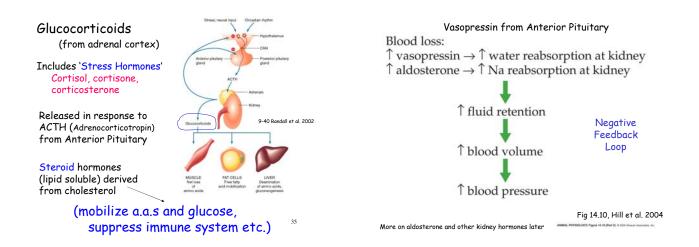
		Positions of amino acid residues*								
Peptide	1	2	3	4	5	6	7	8	9	Animal group
Lysine vasopressin	Cys-	-Tyr-	Pho	-Gln-	-Asn-	-Cys-	-Pro-	Lys	-Gh/-(NH2)	Pigs and relatives
Arginine vasopressin	Cys-	-Tyr-	Phe	-Gh-	-Asn-	-Cys-	-Pro-	Arg	-Gly-(NH ₂)	Mammals ADH
Osytocin	Cys-	-Tyr-	-lle	-Gln-	-Asn-	-Cys-	-Pro-	Leu	-Gly-(NH2)	Mammals
Arginine vasotocin	Cys-	-Tyr-	-lle -	-Gla-	-Asn-	-Cys-	-Pro-	Arg	-Gly-(NHg)	Reptiles, fishes, and birds
Isotocin	Cys-	-Tyr-	-Ile	Ser	-Asn-	-Cys-	-Pro-	-lle -	-Gly-(NH ₂)	Some teleosts
Mesotocin	Cys-	-Tyr-	-lle	-Gla-	-Asn-	-Cys-	-Pro-	le	-Gly-(NH2)	Reptiles, amphibians, and lungfishes
Glumitocin	Cys-	-Tyr-	-Ile	Ser	-Asn-	-Cya-	-Pro-	Gin	-Gly-(NH2)	Some elasmobranchs

*The cysteine residues in positions 1 and 6 of each peptide are bridged by a disulfide Source: Frieden and Lipner, 1971.

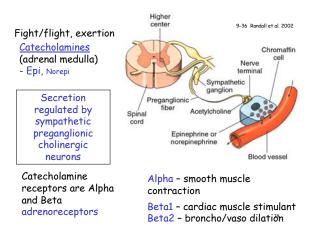


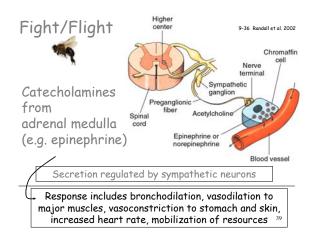


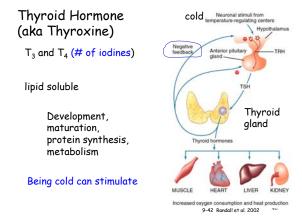



Tropic Hormones of Anterior Pituitary

Hormone	Structure	Target tissue	Primary action in mammals	Regulation*
Adrenocorticotropic hormone (ACTII)	Peptide	Adrenal cortex	Increases synthesis and secretion of steroid hormones by adrenal cortex	Cortical-releasing hormone (CRH) stimulates release; ACTH slows release of CRH
Follicle-stimulating hormone (FSH) FSH	Glycoprotein	Ovarian follicles (female); seminiferous tubules (male)	In female, stimulates maturation of ovarian follicles; in male, increases sperm production	GaRH stimulates release; inhibin and steroid ses hormones inhibit release
Lateinizing hormone (LH)	Glycoprotein	Ovarian interstitial cells (female); testicular interstitial cells (male)	In female, induces final maturation of ovarian follicles, estrogen secretion, ovalation, corpus luteum formation, and progesterone secretion; in male, increases synthesis and secretion of androgens	GaRH stimulates release; inhibin and steroid sex hormones inhibit release
Thyroid-stimulating hormone (TSH)	Glycoprotein	Thyroid gland	Increases synthesis and secretion of thyroid hormones	TRH induces secretion; thyroid hormones and somatostatin slow release

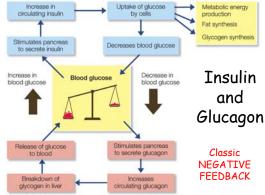



Water and Electrolyte Balance Hormones


Randall et al. 2002 Table 9-8 Mammalian hormones involved in regulating water and electrolyte balance

Hormone	Tissue of origin	Structure	Target tissue	Primary action	Begulation
Antidiuretic hormone (ADH, vasopressin)	Posterior pituitary	Nonapeptide	Kidneya	Increases water reabsorption cAMP pathway	Increased plasma osmotic pressure or decreased
Post. Pit., signal from	n Hypothal				blood volume stimulates release
Atrial natriuretic peptide (ANP)	Heart (atrium)	Peptide	Kidneys	Beduces Na ⁺ and water reabsorption	Increased venous pressure stimulates release
Calcitonin	Thyroid (parafollicular cells)	Peptide	Bones, kidneys	Decreases release of Ca ²⁺ from bone; increases renal Ca ²⁺ and PO ₄ ³⁺ excretion	Increased plasma Ca ²⁺ stimulates secretion
Mineralocorticoida (e.g., aldosterone)	Adrenal cortex	Steroid	Distal kidney tubules	Promotes reabsorption of Na ⁺ from urinary filtrate	Angiotensin II stimulates secretion
Parathyroid horssone (PTH)	Parathyroid gland	Peptide	Bones, kidneys, intestine	Increases release of Ca ²⁺ from hone; with calcitriol increases intestinal Ca ²⁺ absorption; decreases renal Ca ²⁺ excretion	Decreased plasma Ca ²⁺ stimulates secretion

Calcitonin decrease Ca** in blood; PTH increase Ca** in blood

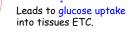

Hypothyroid Goiter (e.g. not enough iodine in diet)

Hyperthyroid Goiter (e.g. 1. thyroxine receptors on hypothalamus or anterior pituitary don't work,

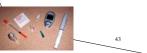
or

 2. receptor for thyroid stimulating hormone is activated by autoimmune antibody)

LIFE 8e, Figure 50.19

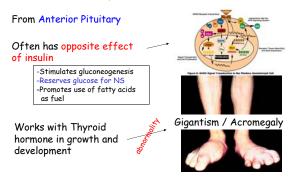

Insulin and Glucagon Regulate blood [glucose]

- Insulin in response to high [glu]-


- Glucagon in response to low [glu]

Both from pancreatic gland: Insulin from beta cells Glucagon from alpha cells

Type 1 Diabetes -when beta cells decrease insulin production Type 2 Diabetes -when insulin receptor signal pathway defective



Causes glycogenolysis and glucose release from tissues (liver, muscles)

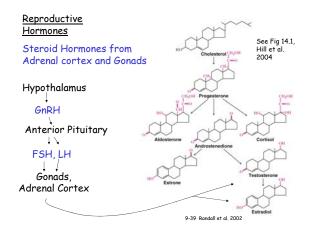
Growth Hormone

Metabolic and developmental effects

Growth Hormone

-Gigantism -Acromegaly

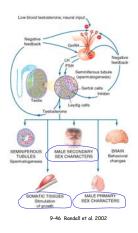
Vertebrate Reproduction

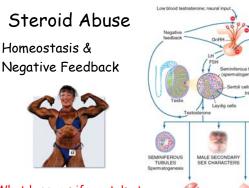


Photography AcclaimImages.com Photography

46

Asexual Parthenogenetic Whiptail Lizards



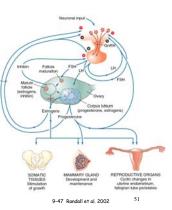

Male Sex Hormones

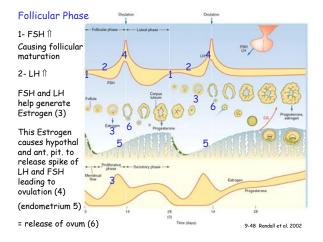
Testosterone and other androgens

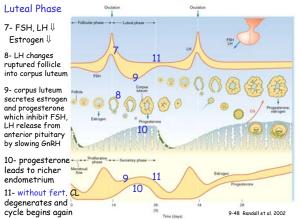
> Released from Leydig Cells in response to LH, FSH

FSH binding to Sertoli cells stimulates spermatogenesis

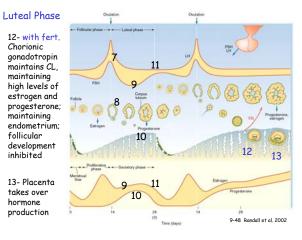
What happens if you take too much exogenous testosterone?

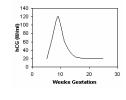

Female Sex Hormones


Estrogens


Ova created and stored before birth (mammals and birds)

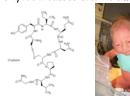
Repro cycle in 2 phases: Follicular and Luteal


FSH stimulates beginning of follicular phase -> development of ovarian follicles


9-48 Randall et al. 2002

Dear Cecil: I just hit 40 and still have an unanswered question from my teens that has always bothered me. Aerosmith in "Sweet Emotion" sings about being accused of impregnating a girl. At the end of the verse they sing, "can't catch me 'cause the rabbit done died," referring to a pregnancy test. Arguments start over just what this test entails. Most say the bunny will die but entails and the serve the start but will done will be an always and the server and the server and the server and the server as Arguments start over just what this test entaits, most say the burny will die, but can't agree as to why. Some say the rabbit will always die because they kill it before they take its blood (which seems pretty dumb). Some say they inject it with some fluid taken from the woman and it dies a horrible, convulsive death. And some say they have to dissect the rabbit after it has been injected. This was before those home test kits, but wasn't there a better way? --Joe Shredl, Colonial Heights, Virginia

Chorionic gonadotropin hCG eCG



Birth Control Pills?

Progesterone and Estradiol - mimic early pregnancy and inhibit ovulation Ho

Parturition (Birth)

Oxytocin released in response to cervical stretch Oxytocin causes uterine smooth muscle contractions

Positive Feedback Loop

57

55

Lactation

Decreased progesterone levels and presence of prolactin (milk production) and oxytocin (milk ejection) and other hormones

Antibodies Vitamins

Mechanosensory feedback

Dopamine inhibits prolactin secretion

marsupial

58

Randall et al. 2002 Table 9-9 Important mammalian reproductive hormones

Hormone	Tissue of origin	Sporture	Target tissue	Primary action	Regulation
Primary sex ho	rmones				
Estradiol-17β (estrogens)	Ovarian follicle, corpus Inteum, adrenal cortes	Steroid	Most tissues	Promotes development and maintenance of female characteristics and behavior, oocyte maturation, and uterine proliferation	Increased FSH and LH levels stimulate secretion
Progesterone	Corpus Intenn, adrenal cortex	Steroid	Uteros, mammaty glands	Maintains uterine secretion, stimulates mammary duct formation	Increased LH and prolactin levels stimulate secretion
Testosterone (androgens)	Testes (Leydig cells), alrenal cortex	Steroid	Most finnes	Promotes development and maintenance of male characteristics and behavior and spermatogenesis	Increased LH level stimulates secretion
Other Hormon	es				
Osytocin	Posterior pituitary	Nonapeptide	Uterm, mammary glands	Promotes smooth muscle contraction and milk ejection	Cervical distrution and suckling stimulate release; high progesterone inhibits release
Prolactin (PL)	Anterior pitnitary	Peptide	Mammary glands (abreolar cells)	Increases synthesis of milk proteins and growth of mammary glands, elicita uniternal behavior	Continuous secretion of PL-inhibiting horizone (PIH normally blocks releases increased estrogen and decreased PIH secretion permit release