The electric eel - Electrophorus electricus

The eel generates electric charge in a battery of biological electrochemical cells, each cell providing about 0.15 V and an overall potential difference of ~ 700 V. Note that the eel's head is the cathode(+) and its tail the anode(-). The cells extend over the length of the eel.

40

Thanks to Professor Don Stevens, Zoology, for the picture and expert advice.

Control of Muscle Force

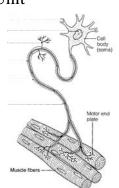
- Two primary factors can be adjusted to increase whole-muscle force:
- the force developed by each contracting fiber (summation)
- the number of muscle fibers contracting within a muscle (recruitment)

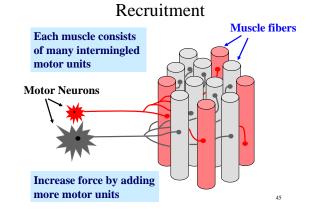
41

43

Summation real about CALCUD United Single S

Increase force by decreasing time between individual action potentials (increase rate of stimulation)

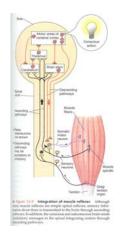

Control of Muscle Force


- Two primary factors can be adjusted to increase whole-muscle force:
 - the force developed by each contracting fiber (summation)
 - the number of muscle fibers contracting within a muscle (recruitment)

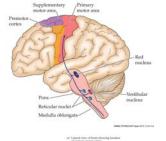
Motor Unit

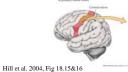
Motor unit = motor neuron and all of the muscle fibers it innervates

AP in motor neuron causes all innervated fibers to contract simultaneously



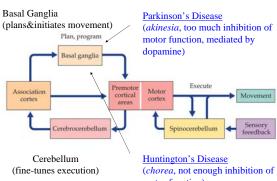
Activating muscles


NERVOUS SYSTEM CONTROL:


•cerebral cortex •frontal, parietal, temporal, occipital lobes •Cerebellum •basal ganglia •brain stem •spinal cord •peripheral nerves

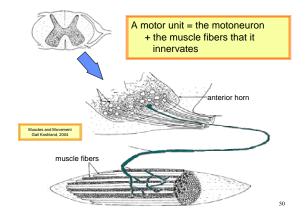
Silverthorn 2001

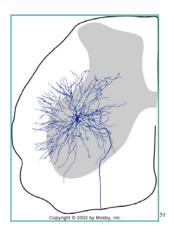
47

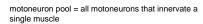


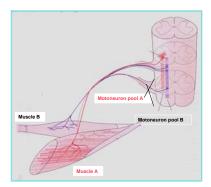
Major Motor Areas, Including PRIMARY MOTOR CORTEX

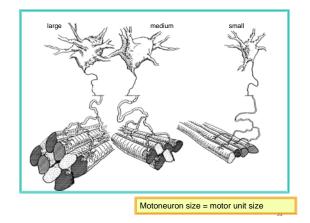
46

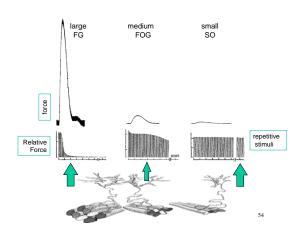

ntation of the body in motor cortes

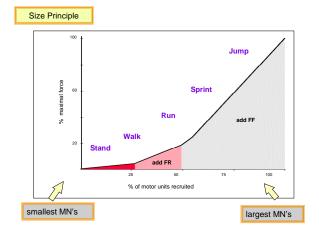

Hill et al. 2004, Fig 18.19

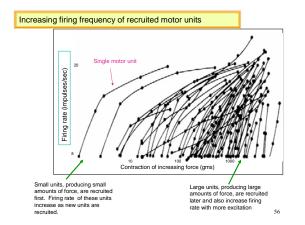

motor function)

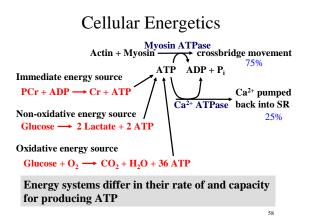

motoneuron in the spinal cord








= 200 motoneurons



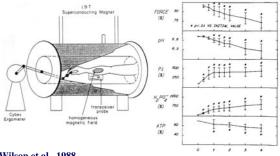
Muscle Energetics and Fatigue

http://homepage.mac.com/hopbailey/Swimming/Articles/Energy_and_fuel.html

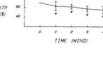
Fatigue

Fatigue can result from many factors including; -decreased motivation -failure of neuromuscular transmission -accumulation of metabolic end-products -dehydration

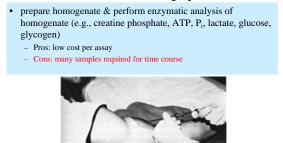
Cause of fatigue depends on intensity & duration of exercise


Fatigue

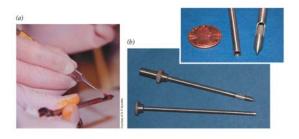
• Continuous exercise at moderate speeds results in net accumulation of P_i $PCr + ADP + H^+ \rightarrow Cr + ATP$ $\mathbf{ATP} + \mathbf{H}_2\mathbf{O} \xrightarrow{\rightarrow} \mathbf{ADP} + \mathbf{P}_i + \mathbf{H}^+ + \mathbf{energy}$


Exercise also produces net accumulation of lactic acid

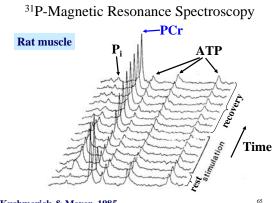
Correlation vs. Causation


P_i accumulation is correlated with development of fatigue, as is lactic acid accumulation (drop in pH)

Wilson et al., 1988



59


Muscle Biopsy

³¹P-Magnetic Resonance Spectroscopy

- Intact muscle (e.g., creatine phosphate, ATP, P_i, pH) - Pros: multiple time points for each preparation - Cons: high cost per preparation
 - pH can be determined from position of P_i peak

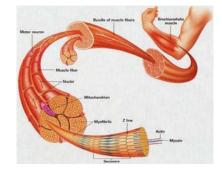
Kushmerick & Meyer, 1985

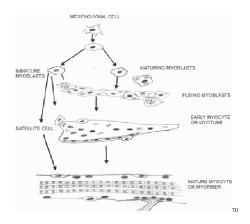
Postulated Mechanisms of P_i Effect on Force

- Reduced cross-bridge force development
- Reduced Ca²⁺ release from sarcoplasmic reticulum
- Reduced Ca²⁺ sensitivity of myofilaments

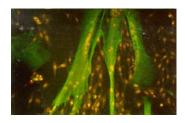
Decreased pH (e.g., lactic acid) does not seem to have much effect on contractility - but may cause pain!

Cooke & Pate, 1985; Allen & Westerblad, 2001; Westerblad et al. 2002 66


Muscle Growth Repair Regeneration


67

How did he get so BIG??



Muscle Growth in a Dish

71

73

75

Factors influencing growth

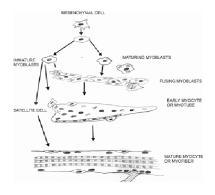
- Genetics
- Location
- Tension
- Innervation
- Environment

Factors cont.

- Environment:
 - Myogenic Regulatory Factors
 - Myo D, Myf5, Myogenin

- Growth Factors

- Insulin-like Growth Factor I (IGF-I)
- Fibroblast Growth Factor (FGF)
- Transforming Growth Factor (TGF- $\beta)$
- Myostatin (MSTN)

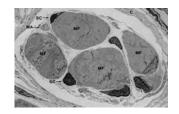

"Double-Muscling" myostatin deficient

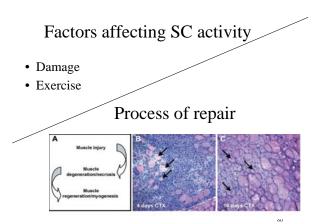
How to add Mass/Strength?

- Increase numbers of fibers: – Hyperplasia
- Increase size of existing fibers:
 - Hypertrophy

77

79


81


Satellite Cell

76

- Adds nuclear material
- Stimulated to proliferate
- Fuses with existing fiber
- Fuses with other SC's to regenerate

Satellite Cell

Process of Repair

- Degeneration
 - Necrosis
 - Inflammation
 - Neutrophils
 - Macrophages
- Regeneration
 - Satellite Cells

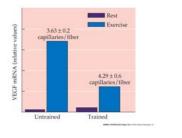
Factors affecting SC activity

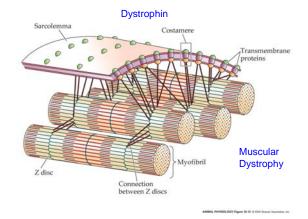
- Damage
- Exercise
- Drugs (Androgenic Steroids)
- Loss of innervation
- Stretch
- Local anesthetics

Atrophy _____ Hypertrophy

Amount of actin and myosin

83


Age, disuse, denervation, suspension w/o load


Sarcopenia (# motor units down, remaining units large)

VEGF (vascular endothelial growth factor) -secreted by working muscle

Angiogenesis

(e.g., type I with more capillaries and mitochondria)

