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Housekeeping, 07 March 2008

Upcoming Readings
Fri 07 Mar: Ch 21 (respiration)

Mon 10 Mar: Ch 21, 22 -
Wed 12 Mar: Ch 23 (circulation) ‘{E
LAB Wed 12 Mar: no reading /
Fri 14 Mar: EXAM TWO (through respiration)
SPRING BREAK

Lab discussion leaders: xx Lab discussion leaders: 26 Mar
Ipm - xx 1pm - Vangie & Christina
3pm - xx 3pm - Prasun & Ajay )
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The Edges of Life - 7pm at Centennial Hall

Wednesday, March 5

Life's Technological Edge: The Singularity is Near: When Humans Transcend Biology
Ray Kurzweil, via Teleportec Teleporter
Founder, Chairman and Chief Executive Officer, Kurzweil Technologies
Humanity is on the edge of a vast transformation, when what it means to be human will be both
enriched and challenged. Inventor and futurist Ray Kurzweil will introduce this radically
optimistic singularity, an era when we break our genetic shackles to create a nonbiological
intelligence trillions of times more powerful than today. In this new world, humans will transcend
biological limitations to achieve entirely new levels of progress and longevity.
This lecture co-sponsored by: UA College of Engineering and UA College of Science

These do not count as physiology lectures.  «
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() Two types of convective transport

3

Unidirectional flow

Tidal flow

(b) Calculation of the rate of convective gas transport

. & F
—
C = Total concentration of gas in flowing fluid (mol/L)
F = Flow rate of fluid (L /second)
Rate of convective gas transport = C*F

Hill et al., 2004, Fig. 20.3
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Rate of diffusion depends on molecular weight (Graham’s Law)
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Figure 1.9 Water iz pumped over the gills of a fish by a
dual pumping system, With the aid of suitable valves, the Knut Schmidt_Nielsen 1997
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Hill et al., 2004, Fig. 21.8
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(b) Thickness of the gas-exchange membrane KEY
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Rate and Depth Regulation
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Rate and Depth Regulation

(Eckert,
13-46)

i ]
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-Primarily via CO,
changes (central)

-Peripheral
Chemoreceptors
PO,, PCO,, pH

(Vagus nerve to medulla
oblongata)

-Innervate Medullary
Respiratory Center

(phrenic nerve to diaphragm
and intercostals)

-Emotions, sleep,
light, temperature,
speech, volition, etc.

-0, ~controls respiration in aquatic vertebrates 1
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Hering-Breuer reflex

-Stimulation of stretch receptors inhibits medullary
inspiratory center

-Prevent overinflation

-Ectotherms often breathe intermittently

Blood-Gas Chemistry

Oxygen and Carbon Dioxide
- Air vs. Water
- Epithelial Transfer
- Transport and Regulation

pH regulation
Chloride shift
Carbonic Anhydrase

Elevation
21
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1 atm
Percent of | Partial pressure in
all gas atmospheres
Oxygen 20.95 0.2095
<lam  \irogen 78.09 07809 Laroe
Argon 0.93
Carbon dioxide  0.03
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Hill et al., 2004, Fig. 20.1
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(b} The oxygen cascade in people
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TABLE 20.1 The usual maximum concentration of O, in air,
freshwater, and seawater at three temperatures The concentra-
tions listed are for air at sea level and fully aerated water equilibrated
with such air; in other words, the O, partial pressure is 0.21 atm in all
cases. For the most part, actual O, concentrations in natural environ-
ments are either as high as shown or lower (because of O, depletion by
organisms).

Concentration of O, (mL O, at STP/L)
at specified temperature
0°C 12°C 24°C
Air 210 200 192
Freshwater 10.2 Al 6.2
Seawater? 8.0 6.1 49

7 The values given are for full-strength seawater having a salinity of 36 g/kg.

Hill et al., 2004 S —



Gas composition in air O2 CO2 N2
% of dry air 21 0.03 78
pp at 760 mm Hg 159 0.23 594
380mmHg (at 6000m) 79.6 0.11 297
Solubility in water (ml/L) 34 1,019 17

Why is pO, in lungs less than ‘expected’?

Tidal gas exchange

0, partial pressure ———— 100 60
in environment

Inhalation Exhalation

Wall of lung

Hill et al., 2004, Fig. 21.3
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(k) Countercurrent gas exchange
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Hill et al., 2004, Fig. 20.6
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Gas transport in blood

Respiratory pigments

all have either Fe®*or Cu?*ions that 0, binds
pigment increases O ,content of blood
complex of proteins and metallic ions

each has characteristic color that changes w/ O,
content

ability to bind to O, (affinity) affects carrying
capacity of blood for O,

98%b of O, transported via carrier
molecules

31

Hemoglobin ¢
and other
Respiratory
Pigments

Knut Schmidt_Nielsen 807

hemoglobin hemocyanin  hemerythrin
Metal Fe?* ct* Fe?*
Distribution over 10 phyla 2 phyla 4 phyla
(all verts, many inverts) (arthropods, mollusks)
Location RBCs (verts) dissolved in intracellular
plasma
Color deox — maroon colorless colorless
ox — red blue reddish violet
32
hemoglobin

cancarry 40O,

4 heme + 4 protein chains
=

heme
molecules  *



