Excretion of Nitrogeneous waste

-When amino acids catabolized, amino group (-NH₂) is released (deamination) -If not reused, need to excrete because toxic

-Three main ways to dispose:

1-ammonia (most toxic, requires lots water) <u>'ammonotelic</u>' (NH₃)

- 2-urea (need 10% of water of NH₃, but costs ATP) <u>'ureotelic</u>' (2N)
- 3-uric acid (white pasty substance, low solubility, need 1% water as NH₃) '<u>uricotelic</u>' (4N), also costs ATP
 - -Disposal depends on water availability \rightarrow

82

Foodstuff		End product
Carbohydrate	\rightarrow	$CO_{2} + H_{2}O$
at	\rightarrow	$CO_2 + H_2O$
Protein	\rightarrow	NH ₃ / Urea Uric acid
Nucleic acids	\rightarrow	Purines +Pyrimidines ↓ ↓
		Uric acid β-Amino acids ↓ ↓
		Allantoin NH ₃ ↓
		Allantoic acid
		4
		Urea
		NH.

Table 9.3 Metabolic end products of the major groups of foodstuffs. Ammonia from protein metabolism may be excreted as such or may be synthesized into other Ncontaining excretory products; purines from nucleic acids may be excreted as such or as any of a number of degradation products, including ammonia.

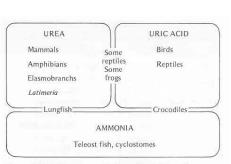
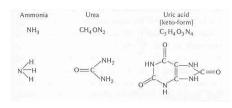
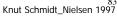
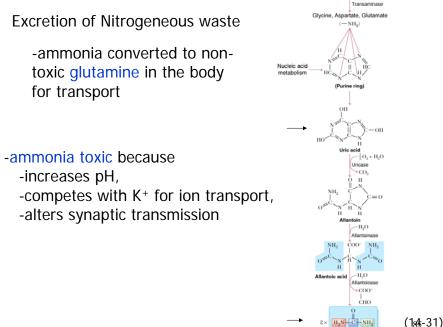




Figure 9.13 Different groups of vertebrates use different compounds as their major nitrogenous excretory product. There are many exceptions to the general pattern indicated in this diagram, most of them related to environmental factors rather than to phylogenetic relationships. See text for further details.



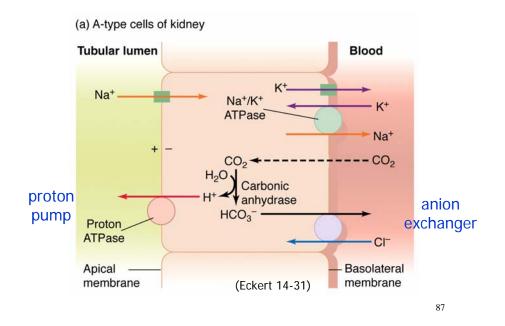
1

Animal	Major end product of protein metabolism	Adult habitat	Embryonic environment
Aquatic invertebrates	Ammonia	Aquatic	Aquatic
Teleost fish	Ammonia, some urea	Aquatic	Aquatic
Elasmobranchs	Urea	Aquatic	Aquatic
Crocodiles	Ammonia, some uric acid	Semiaquatic	Cleidoic egg ^a
Amphibians, larval	Ammonia	Aquatic	Aquatic
Amphibians, adult	Urea	Semiaquatic	Aquatic
Mammals	Urea	Terrestrial	Aquatic
Turtles	Urea and uric acid	Terrestrial	Cleidoic egg
Insects	Uric acid	Terrestrial	Cleidoic egg
Land gastropods	Uric acid	Terrestrial	Cleidoic egg
Lizards	Uric acid	Terrestrial	Cleidoic egg
Snakes	Uric acid	Terrestrial	Cleidoic egg
Birds	Uric acid	Terrestrial	Cleidoic egg

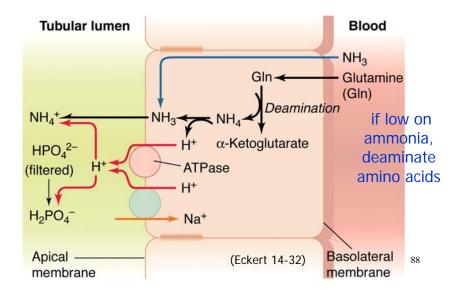
Table 9.4 Major nitrogen excretory products in various animal groups.

Knut Schmidt_Nielsen 1997

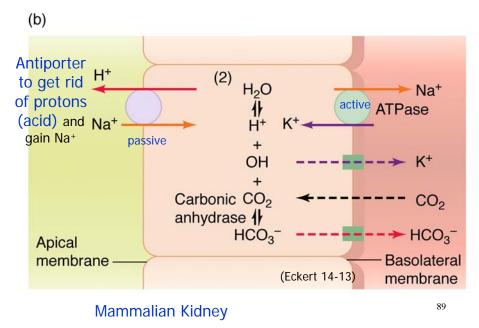
(1&-31)

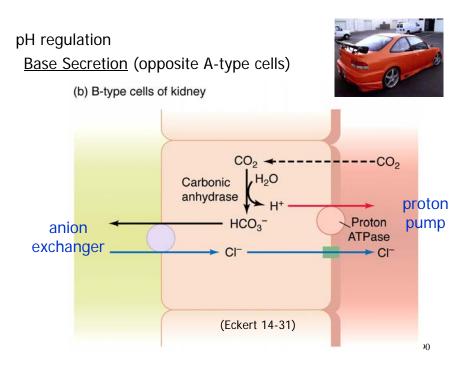


Proximal tubule and loop of henle:


Na⁺/H⁺ antiporter (driven by Na/K-ATPase)

Distal tubule and collecting duct: A-type cells with proton pump and anion exchanger


86



Ultrafiltrate buffered by bicarbonate, phosphates, and ammonia allowing for more acid secretion e.g., $NH_3 + H^+ \rightarrow NH_4^+$

Gradients established and used:

