Lecture 30+31
02+04 April 2008
Vertebrate Physiology
ECOL 437 (MCB/VetSci 437)
Univ. of Arizona, spring 2008
Kevin Bonine \& Kevin Oh

Housekeeping, 02 April 2008

Upcoming Readings
Wed 02 Apr: Ch 25\&26
LAB 02 Apr: Lillywhite 1988, Zapol 1987
Fri 04 Apr: Ch 25\&26
Mon 07 Apr: Ch 27
Wed 09 Apr: Ch 27\&28
LAB Wed 09 Apr : no reading
Fri 11 Apr: Exam 3

Lab discussion leaders: 23 April
1pm-none
3pm - Nina

PHYSIOLOGY

Lise Bankir, PH.D.
Director of Research, 1st Class
INSERM Unit 872
University Pierre and Marie Curie Paris, France
"Urea handling by the mammalian kidney. Lessons from knockout mice."

Friday, April 11, 2008 11:00 a.m.
AHSC Room 5403
Refreshments will be served

Vertebrate
 Osmoregulation

Osmoregulation
-life arose in salty sea
-extracellular fluids \sim similar

-dist'n limited by temperature and osmotic pressure

 (dehydration, ionic composition)-terrestrial organisms (and their descendents) regulate internal environment (homeostasis)
-salt and water regulation (waste excretion)
-kidneys, salt glands, gills

Obligatory Osmotic Exchanges
1-Gradients
-Frog in freshwater
-Fish in ocean

2-Surface-to-Volume Ratio
-Small animals dehydrate or hydrate more rapidly
-Skin, and Respiratory surface (higher metabolism with higher per/gram respiratory surface)

3-Integument Permeability
-Transcellular or Paracellular
-Aquaporins = water channel proteins
-Frogs vs. Lizards, Pelvic Patch etc.

Obligatory Osmotic Exchanges
4-Feeding, Metabolism, Excretion
-metabolic waste products
ammonia, urea, etc.
-metabolic water (desert!)
-ingestion of salts
-kidneys, salt glands, gills (more later)

5-Respiration
-internalize respiratory surface -temporal countercurrent system
(dry and cool IN, becomes moist and warm; recover)
(countercurrent blood flow also)
-temperature regulation vs. water conservation
-ectotherm vs. endotherm (in deserts)

1. Fresh

Blood osmolarity 200-300 mosm/L
Water ~ 50 mosm/L

- hyperosmotic animals, danger of swelling, losing salts
- get their water across skin
- dilute urine
- active uptake of salts across epithelium
- fish gills, frog skin, etc.

2. Salt ($\sim 1,000 \mathrm{mosm} / \mathrm{L}$)

Most marine vertebrates hypo-osmotic
(e.g., teleost or bony fishes)

- danger of losing water, gaining too many salts
- drink saltwater
- excess salts actively secreted (gills, kidneys)
- chloride cells for salt secretion

- Air Breathing

Have to lose water to allow gas exchange

- Marine reptiles and marine birds can drink seawater and secrete salts in high []

Water Sources:

1 Free

2 Preformed

3 Metabolic

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \leftarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

Hill et al. 2004, Fig 26.15

14

15

Lab rats
TABLE 25.4 Approximate catabolic gains and losses of water in caged kangaroo rats (Dipodomys) and laboratory rats (Rattus) when eating air-dried barley and denied drinking water at $25^{\circ} \mathrm{C}$ and 33% relative humidity The values given are grams of $\mathrm{H}_{2} \mathrm{O}$ per gram (dry weight) of barley ingested. Those for the kangaroo rats are from Box 25.1

Category of water gain or loss	Kangaroo rats	Laboratory rats
Gross metabolic water produced	$0.54 \mathbf{g} / \mathbf{g}$	$0.54 \mathbf{g} / \mathbf{g}$
Obligatory water losses	0.33	0.33
\quad Respiratory	0.14	0.24
Urinary	$\underline{0.00}$	0.03
Fecal	$\mathbf{0 . 4 7}$	$\mathbf{0 . 6 0}$
Total obligatory water losses	$+\mathbf{0 . 0 7}$	$-\mathbf{0 . 0 6}$
Net gain of metabolic water		

Osmoregulation

-Air Breathing Desert Mammals

Behavior and Physiology

Kangaroo Rat
-Reduce Activity
-Remain in Cool Burrow

-Humid
-Water into dry seeds
-Highly concentrated urine
-Very dry feces (rectal absorption)
-Metabolic water

Water

Lose water: evaporation
urine
feces
salt glands

Alter behavior and physiology to minimize water loss Water balance limits activity in time and space

Amphibs lose most water via evaporation

- cutaneous resistance

1 dried mucus
2 cocoon
3 wax

19

Figure 5-4 Wiping behavior of the tree frog Pbyllomedusa sauvagei. (Courtesy of Rodolfo Ruibal.) Pough et al., 2001

