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Abstract.—In this article we show that, for host-parasitoid interactions in a heterogeneous
environment and with discrete generations, the dynamic effects of any patterns of distribution
of searching parasitoids can be assessed within a common, simple framework. The populations
are regulated if the distribution of searching parasitoids is sufficiently heterogeneous. Specifi-
cally, the square of the coefficient of variation (CV?) of the searching parasitoids per host must
exceed unity. This criterion is demonstrated to apply approximately, in general and also in
several specific cases. We further show that CV? may be partitioned into a density-dependent
component caused by the response of parasitoids to host density per patch and a density-
independent component. Population regulation is enhanced as much by density-independent as
by density-dependent heterogeneity.

The spatial patterns of parasitism by insect parasitoids, and the importance of
these to the population dynamics of host-parasitoid interactions, have been topics
of widespread interest in ecology for several years. Many models have been
developed in which heterogeneity in the distribution of parasitism has played an
important part in population regulation (e.g., Hassell and May 1973, 1974, 1988;
Murdoch and Oaten 1975; May 1978; Perry 1987; Reeve 1988). At the same time,
data from laboratory and field studies have accumulated and show the patterns
of percent parasitism in relation to local host densities per ‘‘patch’ or other
sampling unit. These have recently been reviewed by Lessells (1985), Stiling
(1987), and Walde and Murdoch (1988) and categorized under the headings ‘‘di-
rect”’ or ‘‘inverse density-dependent’’ and ‘‘density-independent’’ (fig. 1).

A popular interpretation of these data, guided by the theoretical literature of
the time (e.g., Hassell and May 1973, 1974; Murdoch and Oaten 1975), has been
that the direct density-dependent patterns are the most important in promoting
the stability of the interacting populations. More recently, however, it has been
emphasized that in addition to these direct density-dependent patterns, inverse
density dependence (Hassell 1984; Walde and Murdoch 1988) and variation in
parasitism that is independent of host density (Chesson and Murdoch 1986; Has-
sell and May 1988) can both be important contributors to population regulation.
This arises in part because any variation in levels of parasitism from patch to
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Fic. 1.—Three examples from field studies of different patterns of parasitism from patch
to patch. «, Direct density-dependent parasitism of the scale insect Fiorinia externa Ferris
by the eulophid parasitoid Aspidiotiphagus citrinus (Craw.) on the lower crown of 30 hemlock
trees (McClure 1977). b, Inverse density-dependent parasitism of gypsy moth (Lymantria
dispar [L.]) eggs by the encyrtid parasitoid Ooencyrtus kuwanai (Howard; see Brown and
Cameron 1979). ¢, Density-independent parasitism of gall midge, Rhopalomyia californica
(Felt.), by the torymid parasitoid Torymus baccaridis (Huber; see Ehler 1987).

patch has the net effect of reducing the per capita parasitoid searching efficiency
(measured over all hosts) as parasitoid density increases (the so-called pseudoin-
terference effect of Free et al. [1977]).

It follows that the dynamical consequences of observed, within-generation pat-
terns of parasitism cannot simply be inferred from the shape of the relationships.
This led Hassell and May (1988) to suggest an alternative approach in which some
simple and measurable quantity, characterizing the way parasitoid attacks are
distributed among patches, could provide a guide to the dynamical properties of
the host-parasitoid association. Specifically, they conjectured that heterogeneity
in the distribution of parasitism may result in the overall population densities of
hosts and parasitoids remaining roughly steady (a locally stable interaction) if
CV?is greater than one, where CV is the coefficient of variation in the distribution
of searching parasitoids among patches. If CV? < 1, the interaction is likely to
exhibit cyclic, chaotic, or (in simple cases) diverging fluctuations.

In this article, we show that a criterion very similar to that proposed by Hassell
and May (1988) indeed gives an accurate account of the qualitative nature of the
dynamics in a variety of models. An overview of this work is also given in Pacala
et al. (1990). Specifically, let the density of searching parasitoids about the ith
host be p; (i = 1,2, ...,y), and let the density of such parasitoids in the jth
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patchbe ¢, (j = 1,2, ..., 2). Characteristically, models express the distribution
of parasitoids and hosts in terms of the g; and n; (host density in the jth patch).
We show that an approximate condition for locally stable dynamics is that the
coefficient of variation squared of the p, across the y hosts exceeds one (rather
than the coefficient of variation of the g; across the z patches as in Hassell and
May [1988]). Here, CV? refers exclusively to the coefficient of variation squared
of the p;. If f(g, n) is the joint density function for g; and n;, the density function
for p; is given by h(p) = [ nf(p,n)dn/[[ nf(n,p)dndp. This is the weighted
distribution discussed in Chesson and Murdoch (1986) and is the distribution that
we use to calculate the CV?.

We also show how between-host variation in parasitism can be partitioned
between the density-dependent component (both direct and inverse) and the re-
sidual variation about this, both contributing in a precise way to population regu-
lation. In the companion article, we show, first, how the same criterion can be
applied to the kinds of data that now abound in the literature relating percent
parasitism to host density per patch (fig. 1), and second, how this changes our
views on the design of field studies aimed at evaluating the role of heterogeneity
in population dynamics.

THE MODELS

To demonstrate the generality of the suggested rule, CV? > 1, we show that it
is approximately the condition for stability in five different models, all based on
a familiar discrete-generation host-parasitoid model (Hassell 1978):

N,,, =\N,F(N,,P,); (1a)
P,,, = wN,(l — F(N,P)]. (1b)

Here N and P are the host and parasitoid populations in successive generations
tand ¢ + 1, \ is the host’s finite rate of increase in the absence of the parasitoid,
F(N,, P,) is a function giving the average proportion of hosts that escape parasit-
ism, and w is the average number of female parasitoids emerging from each host
parasitized (henceforth, we assume that w = 1). The functional form of F(N,, P,)
depends on all the factors that affect the rate of parasitism of hosts by the P,
searching adult parasitoids. An internal equilibrium of equation (1) is defined by
AF(N*,P*)y = 1 and P* = N*(1 — 1/\) and is locally stable if

2 * *
N FIN* P _

N - 1P P, ’ (22)
—_ _ * * * *
A 1( AF(N*, P )) o OF(N*,P¥) (2b)
N P, N,

Many studies of this model have focused on the effects of spatial heterogeneity
on stability (reviews in Hassell 1978; Chesson and Murdoch 1986). Typically, the
habitat is assumed to be composed of discrete patches, and host density varies
from patch to patch either as a random variable or in some other prescribed way.
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The density of searching parasitoids in each patch is either a random variable
independent of local host density (e.g., May 1978; Chesson and Murdoch 1986)
or a deterministic function of local host density (e.g., Hassell and May 1973,
1974). Chesson and Murdoch (1986) labeled models containing the former as-
sumption as pure-error models and those containing the latter as pure-regression
models. These labels stem from the realization that the spatial distribution of the
parasitoid may be modeled generally as a regression of local parasitoid on local
host density. Covariance between the parasitoid and host is accounted for by the
regression function, and heterogeneity in the density of parasitoids that is unre-
lated to host density is accounted for by the regression error. Although we recog-
nize that this distinction is important, we also feel that the phrase ‘‘pure error
model’’ may suggest to some that the heterogeneity is caused only by the limited
decision-making abilities of parasitoids (though this ‘‘decision error’’ is certainly
one source of ‘‘pure error’’). We thus adopt the more cumbersome yet accurate
labels of HDI models and HDD models, in which HDI stands for host-density-
independent heterogeneity and HDD for host-density-dependent heterogeneity.

The five models we use to demonstrate the generality of the CV? > 1 rule are
listed below and described in detail in the ensuing sections.

Model I is an HDI model in which parasitoid density varies from patch to patch
as a gamma-distributed random variable. This model reduces to the negative-
binomial model of May (1978).

Model II is a corresponding HDD model in which host density varies from
patch to patch as a gamma-distributed random variable and local para51t01d den-
sity is a deterministic function of local host density.

Model III is a general HDI and HDD model of which Model I, Model 11, and
most other published discrete-generation models are special cases. In Model 111,
host spatial distribution is arbitrary and HDI and HDD are given by general
functional forms. We can analyze Model III if \ is close to one or if there is small
variability among the local population densities of both parasitoids and hosts. We
include Models I and II, even though these are special cases of Model 111, because
Models I and II can be analyzed no matter what the value of A or degree of
variability among patches.

Model IV is a model with no spatial structure in the habitat but with variation
between individual hosts in their ability to survive parasitism by encapsulating
the parasitoid progeny (Godfray and Hassell 1991). This model is included to
demonstrate that the CV? > 1 rule is valid even with some major changes in the
biological assumptions underpinning Models I-III.

Model V is a numerical model that departs from the assumptions of equation
(1) in having only a fraction of the parasitoid progeny emerging within a patch
enter a ‘‘pool’’ for subsequent redispersal among the patches (Hassell and May
1988; Reeve 1988). The remainder stay on in the patches and reproduce there. The
hosts are evenly distributed and the dispersing parasitoids colonize the patches
according to a negative-binomial distribution. Model V is thus an HDI model and
is included here to demonstrate that the CV? > 1 rule is not a result of the
phenomenological assumptions about spatial distributions in Models I-III.
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Model 1

Consider a habitat divided into discrete patches, such as food plants for an
herbivorous insect, and suppose that both hosts and parasitoids are distributed
among the patches. This, for instance, is often the case for univoltine forest
Lepidoptera and their specialist parasitoids. We allow the hosts to have any
spatial distribution whatsoever, but the distribution of parasitoids is unrelated to
that of their hosts. Local densities of searching parasitoids are thus determined
by chance and by their responses to environmental cues that are uncorrelated
with local host densities. More specifically, we assume that parasitoid density
varies as a gamma-distributed random variable from patch to patch. Because host
and parasitoid distributions are independent, the distribution of parasitoids from
host to host is also gamma. The gamma-probability-density function with unit
mean and variance 1/a is

glx) = a*x* e /T (ar),

in which I'(a) is a normalizing constant and « is a positive constant governing the
shape of the density function. If a =< 1, then the density is monotonically decreas-
ing, indicating that a sample typically consists of many small values and a few
large values. If a > 1, then the density is humped, but the mode is to the left of
the mean. As a approaches infinity, the density converges to a symmetrical nor-
mal density. Finally, if X is a unit-mean gamma-distributed random variable, then
Y = XP, is gamma distributed with the same value of o and mean P,.
The fraction of hosts that escape parasitism in equation (1) is thus given by

F(P) = [ glepe=rde, 3

in which a is the per capita searching efficiency of the parasitoid (see Hassell
1978). The term exp(—aP,e) is the zero term of a Poisson distribution with mean
aP.e. It gives the probability of a host’s being attacked zero times by parasitoids
that search randomly within a patch containing parasitoid density P,e. Note that
e may be viewed as a multiplicative residual in a (zero-slope) regression of local
parasitoid on local host density (Chesson and Murdoch 1986).

Equation (3) reduces to

FP,) = [a/(a + aP)]*%;
thus, the unique, nontrivial equilibrium of the models (1) and (3) is
P¥* = a (W= 1)/a and N* =ah A" = D)/a(x — 1).

This equilibrium exists if A > 1. Stability condition (2b) is always satisfied because
dF/oN, = 0 and dF/dP, < 0. Condition (2a) reduces to

a(l — A" <1 — 1N, 4)

and condition (4) is true if the equilibrium exists and o < 1 (May 1978).
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Because the variance in the density of parasitoids is
[ g@@e— Py = Pl

the CV? of parasitoid density is simply 1/a. Thus, the condition, CV? > 1, is
identical to o < 1, which is the necessary and sufficient condition for local stabil-
ity. Notice, incidentally, that this model is formally identical with the phenomeno-
logical model propopsed by May (1978), in which parasitoid attacks are effectively
distributed in a negative-binomial manner (cf. the above expression for F(P,) with
May’s k identified as o).

Model I

From the extreme of no correlation between parasitoid and host spatial distribu-
tions, we now turn to the opposite extreme of a perfect correlation between the
two. We assume that local parasitoid density deterministically tracks patch-to-
patch variation in host density (see the empirical examples in Pacala and Hassell
1991). Specificially, let us suppose that the local density of searching parasitoids
is given by the regression function, aP,(N/N,)*, in which N is the local host
density and w is a constant governing the degree to which parasitoids aggregate
in patches with high host density. The function is identical, except for a normal-
ization constant, to that in Hassell and May (1973). If local host density is a
gamma-distributed random variable with mean N,, then the average density of
hosts surviving parasitism is

f: g'(x)x exp[ —aP(x/N,*1dx,

in which g'(x) is the gamma density with mean N,; the average fraction of hosts
surviving parasitism is, therefore,

'8
C o X — *
fo g'(x) N exp[ aP,(N) ] dx.
Now let the relative local host density be n = N/N,. The random variable # is

gamma distributed with the same value of o as N, but with unit mean. Again
using g(X) for the unit-mean gamma density, we have

F(P) = [ gloxexp(—aPx¥)dx. )
0

The models (1) and (5) are not as tractable as Model 1. Three facts simplify the
necessary numerical work. First, it is straightforward to prove that the model has
a single internal equilibrium that exists if A > 1. Second, stability criterion (2b)
is always true because 0F/dN, = 0 and 0F/dP, < 0. Third, the searching efficiency,
a, does not affect stability (to see this, introduce new state variables, P, = aP,
and N, = aN,). We are thus left with three parameters that affect stability (A, .,
and o) and a single stability criterion (2a).

Results of a numerical examination of criterion (2a) are illustrated in figure 2
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Fic. 2.—Stability criterion for Model II. The internal equilibrium is stable for values of
and « above the appropriate dashed curve and unstable for values below. The solid curve
shows values of p and a at which CV? = 1. CV? > 1 above the curve and CV? < 1 below.

(dashed curves). For each of the three values of A shown, the internal equilibrium
is unstable for values of w and o below the curve and stable for values above.
The expression for CV? is given by

2
j glx)x2m+1 a’x/[J' g(x)xr+! dx] -1.
0 0

The solid line in figure 2 shows values of w and « for which CV? = 1; CV? < 1
applies below the curve and CV? > 1 above. Note that the CV? > 1 rule is
approximately the condition for stability in Model II. The approximation is best
for values of X near one and for highly aggregated host distributions (small values
of «). Although the CV? criterion is only approximate for this HDD model, there
is a class of HDD models for which it is exact. These are the models discussed
by Chesson and Murdoch (1986) in which host-density-dependent heterogeneity
gives rise to a gamma distribution with constant parameters for the distribution
of parasitoids among hosts.

Model II1

Models I and II represent opposite endpoints of the continuum between host-
density-independent (HDI) heterogeneity and host-density-dependent (HDD) het-
erogeneity. They also include restrictive, though reasonable, assumptions about
the different functional forms (e.g., gamma-distributed populations or power-law
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dependence of local parasitoid on local host densities). We now consider a much
more general model that removes these restrictive assumptions; spatial distribu-
tions are left unspecified and any degree of spatial covariance between parasitoid
and host is allowed. We do, however, make two assumptions ensuring that stabil-
ity criterion (2b) is always satisfied, as it is in Models I and II. Considerations of
stability then remain with the dependence of the average fraction escaping parasit-
ism on parasitoid density (criterion 2a).

We assume first of all that the distribution of relative numbers (n = N/N,) of
hosts in patches does not change with host density but otherwise can be any
distribution whatever. Second, we assume that the mean number of parasitoids
in a patch, given host density, is expressible as P,f(n), in which fis an arbitrary
function of relative host density (n). These restrictions are unlikely to be met
exactly in nature, but the available evidence (see Murdoch and Stewart-Oaten
1989) suggests that they are not too grossly in error.

The description of the model is complete once we define variation about the
conditional mean parasitoid density. We consider a combination of multiplicative
and additive variation about this mean, which we hope covers an adequate range
of possibilities for variability in this system. From the basic underlying
Nicholson-Bailey assumptions in these models, we know that parasitism depends
not just on the number of parasitoids visiting a patch, but also on the amount of
time they spend there (Hassell and May 1974). If the ith parasitoid to visit a patch
spends T, time units there, the probability that a particular host escapes parasitism
is the zero term of the Poisson distribution and takes the form

P
exp< —a Z T,.) . (6)

i=1

We allow the T; to have any distribution but assume that P is Poisson distributed,
given local environmental conditions and host densities. This is a standard way
of recognizing that P is a discrete variable (Chesson and Murdoch 1986), and it
incorporates further additive variation. Multiplicative variation enters through
the assumption that environmental factors alter the attractiveness of a locality to
parasitoids, as in Model I. We then obtain a ‘‘patch-specific’’ mean parasitoid
density equal to

Z = PfmU, (M

in which U is a random variable with mean 1, representing variation in environ-
mental factors attracting partasitoids to patches. The mean density Z (which is
really a conditional mean given n and U) is called patch specific because it de-
pends on the properties of the patch, such as the environment and the host
density. It excludes chance variation in parasitoid visits to the patch that cannot
be explained by n or U.

With these details, we can now specify the fraction of hosts surviving as

P
F(P,) = E[nexp(—lZ)], ®)

i=1
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in which E simply means the mathematical expected value of the expression in
brackets. This can be defined by a set of integrals and sums over the joint proba-
bility distributions of N, U, P, and T, T,, . . . , but it is much easier to analyze
if left in the random-variable form.

If Y(a) is the Laplace transform, E[exp(—aT})], of the times spent in patches,
use of conditional expectations shows that equation (8) reduces to

F(P,) =E (neflllflb(a)])’ (9)

which is equivalent to a situation with no additive variation, but with a replaced
by 1 — ¥(a). We should not be surprised, therefore, that additive variation plays
no role in stability.

Expression (9) is analyzed in the Appendix under the assumption that \, the
host rate of increase, is near 1. It is shown that a CV? > 1 rule does apply, but
the CV? is not for the actual number of parasitoids visiting a patch, nor is it for
the actual total amount of time that parasitoids spend in a patch. Rather, it is the
CV? of Z, the patch-specific mean parasitoid density, equation (7), calculated on
a per-host basis. This CV? is independent of additive variation, as anticipated by
expression (9). Indeed, on the basis of expression (9), which generalized the
corresponding expressions in Models I and II, we must conclude that the CV? of
the patch-specific mean parasitoid density is also the quantity required in those
models.

The variable Z is not directly observable, and so we face the empirical problem
of how it can be estimated. It is thus instructive to see under what circumstances
the required CV? can be approximated by the CV? of some more observable
quantity. We consider just the total amount of time, T = Z; T}, spent by parasit-
oids in a patch, because this is often closely related to the usual observation of
percent parasitism in a patch.

Repeated application of the conditional-variance formula

V(Y) = E[V(Y|X)] + V[E(Y|X)] (10)
shows that
CVi=CVZ+(1+ CVZT[)/EZ, (1

where all means and CV?s are calculated on a per-host basis. The second term
on the right-hand side of equation (11) is the error caused by using CV% as an
approximation of CV%. The error is small if the mean number of parasitoids, EZ,
visiting a patch containing a randomly chosen host is large. This is the sort of
information that might be easily obtained in many settings, and if EZ is not large,
then one might attempt to measure the error so that it can be subtracted.

Given that the error structure of this model is so important, how do we interpret
it in relation to existing information on variation in host-parasitoid systems? The
power-law relationship o? = cx*, relating the mean x and variance o of distribu-
tion, with constants ¢ and s, has been used to describe mean and variance rela-
tionships for local abundances of a variety of organisms including parasitoids
(Taylor et al. 1978; Elliott 1983). The distribution of T, as defined here, does not
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belong to this family, but equation (11) implies that it has a relationship of the
form
o’ = ax + bx?, (12)

in which a and b are constants. This remains true when the distribution of T is
assessed on a per-patch, rather than a per-host, basis.

Although equation (12) is not a power law, it approximates one with a value of
s between 1 and 2. Indeed, as remarked by Murdoch and Stewart-Oaten (1989),
the difference between equation (12) and a true power law is unlikely to be
detectable empirically. Moreover, as Taylor et al. (1978) showed, values of s
between 1 and 2, as required here, seem most realistic for insect counts. The
same must be true for the related quantity 7. In this context we can see that the
error in using CV3 as an approximation to CV% will be small when x is large,
reflecting a large value of EZ. This then means that the relationship between the
mean and variance of T can be well described by a power law with s = 2.

Model IV

Godfray and Hassell (1991) explored a quite different case of heterogeneous
parasitism, one in which host individuals vary in their ability to encapsulate the
parasitoid progeny (eggs or larvae). Such variability has been well documented
in Drosophila species and their parasitoids (Bouletreau 1986). Suppose that an
individual host has probability R of encapsulating an egg of an endoparasitoid
and that R varies randomly among hosts with probability density function g(r).
If the number of attacks per host is a Poisson random variable, if one egg is laid
per attack, and if the probability that any one host successfully encapsulates n
eggs is R,, then we may write F(-) in equation (1) as

1
F(P,) — J;) q(,.)€~(zP((l—,-) dr.

Godfray and Hassell (1991) approximated Taylor’s expression by expanding
explaP,(1 — r)] about the mean, R, and dropping terms of higher than second
order. They then derived a local stability criterion for the resulting model (the
approximation together with eq. [1]). If A is close to one (roughly between 1 and
2.5), then the necessary and sufficient condition for local stability is approxi-
mately

ox/(1 = R?>1, (13)

in which o% is the variance of R.

Because of interhost variation in R, there is interhost variation in the mean
level of successful parasitism. We define the mean density of effective parasitoids
experienced by a host with probability of encapsulation R as P, (1 — R). Thus,
the mean density of effective parasitoids across all hosts is P,(I1 — R), and the
variance is

fl q[P,(1 —r) — P(1 — Rdr = P*c%.
0
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Thus, in this very different model, the stability criterion (13) is again the CV? >
1 rule.

Model V

In the previous models all hosts and parasitoids redistributed themselves among
the available patches in each generation. Although there are many natural exam-
ples of this, particularly from univoltine species, there are also many cases of
less complete mixing, with some of the hosts and parasitoids tending to remain
within the patch from which they originated. A general model allowing some
hosts and/or parasitoids to stay in the patch from which they emerged, while the
remainder enter a ‘‘pool”’ to be redistributed anew in the next generation has
recently been discussed by Hassell and May (1988) and Reeve (1988). There is
now a continuum from complete host mixing to no host mixing, and complete
parasitoid mixing to no parasitoid mixing. Assuming, for simplicity, that the prob-
ability of leaving a patch is density independent and that there is no mortality
associated with the movement, the hosts and adult parasitoids in the ith patch,
N, and P, respectively, are now given by

Nt + 1) = )\[S,(l —x) o) S,xj], (142)
=1

P+ 1)=N,1-y)+B; > Nyy- (14b)

1

n

J

Here o, and B; are the fractions of dispersing hosts and parasitoids, respectively,
that enter the ith patch, S, is the number of these hosts surviving from parasitism
and N, the number of hosts parasitized {N,[1 — exp(—aP;)]}. Finally, x; and y;
are the fraction of host and parasitoid progeny, respectively, leaving the patch
for subsequent redistribution in the next generation, and # is the total number of
patches.

A full analysis of this model would require a separate treatment. Numerical
studies, however, indicate that the CV? rule is a good indicator of stability for at
least some cases of the model (14). For example, suppose that there is complete
host mixing in each generation (x; = 1) and that the fraction of parasitoids mixing
varies from zero to one. We assume an even host distribution, and that those
parasitoids that do disperse redistribute themselves according to a negative bino-
mial distribution. The model is thus an HDI model, not dissimilar to Model I.
Figure 3 shows a numerical example in terms of the CV? of the parasitoid distribu-
tion at equilibrium as the fraction of parasitoid mixing is changed. Once again the
CV? > 1 rule is a good indicator of stability.

CONCLUSION

While it is widely appreciated that heterogeneous parasitism has the potential
to regulate host-parasitoid interactions, there is no consensus on just what kinds
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FiG. 3.—A numerical example from Model V. The histogram bars show the values of CV?
at equilibrium as a function of the fraction of parasitoids that disperse in each generation (y
in eq. [14b]). The model is stable, with CV* = 1, provided that at least 70% of the parasitoids
disperse in each generation. Below this value, the model shows limit cycles, and CV? fluctu-
ates with values less than one. Parameter values: A = 2, ¢ = 0.01, & (negative binomial) =
1, n = 20.

of heterogeneity do achieve such regulation. This article shows that, for associa-
tions of a single host and a single parasitoid in which the populations have discrete
generations, the dynamic effects of any pattern of distribution of searching para-
sitoids can be assessed within a common framework: the populations are regu-
lated if the CV? of the distribution is greater than one.

We have also shown how this measure of variation has two components: (1)
HDD heterogeneity (direct or inverse) and (2) HDI heterogeneity whereby the
variation from host-to-host is independent of local host densities. Each of these
components promotes population regulation in the same way, by contributing to
the value of CV?2.

To see this more clearly, consider the fraction of hosts that escape parasitism
[F(N,, P,)] from a general pure HDD model,

F(N,P,) = fo " Sf(N) (NIN e "®NgN | (15)

in which (V) is the host’s spatial distribution. The corresponding fraction from
a general pure HDI model is

F(N, P,) = f:r(e)e-f‘("fﬂde, (16)

in which r(e) is the distribution of the factor e that causes the host density-
independent variation. Like &(N), the quantity ¢'(N) = &(N)N/N, is a probabil-
ity density. Whereas &(IN) governs the fraction of patches with host density N,
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&'(N) governs the fraction of hosts that inhabit a patch with host density N. We
may write equation (15), using ¢'(N), as

F(N,P,) = fo &' (N)e " PeNgN, 17)

which has exactly the same form as equation (16). Dynamics are affected by the
level, but not the source, of host-to-host variation in the probability of parasitism,
as reflected in the structural equivalence of HDD and HDI models (17) and (16).

The five models discussed in this article show that the ““CV? > 1 rule” is
likely to apply across a wide variety of host-parasitoid interactions. The analysis,
however, makes several fundamental assumptions (listed below) about the biol-
ogy of the interactions that certainly do not apply to all host-parasitoid model or
field systems.

(1) Coupled, synchronized interactions.—This restricts our analysis to parasit-
oids that are effectively specialists on the one host species. The dynamics of
generalist parasitoids and their hosts can be very different (Hassell and May 1986)
and will require a separate treatment.

(2) Discrete-host and parasitoid generations.—Univoltine systems in temper-
ate regions provide some of the best examples of discrete generations. Many
other systems in which hosts and parasitoids are multivoltine, with some degree
of generation overlap, are also likely to be adequately represented in discrete time
(Godfray and Hassell 1989). Interactions in which host and parasitoid generations
overlap more comprehensively are better represented in continuous time, and
these systems are typically more stable than their discrete-time counterparts.
Additional work is required to develop parallel results that apply to such systems
with overlapping generations and continuous reproduction. The distribution of
parasitoids in host-parasitoid models with discrete generations is sometimes de-
scribed in terms of a single episode of parasitoid distribution among patches,
which is then ‘‘fossilized’’ until the next generation. This, however, is not a
necessary assumption: the models require only that a particular distribution of
total searching time by parasitoids in the different patches be specified over the
generation period; within any one patch, this can be the result of a single visit or
many Vvisits.

(3) Random exploitation of hosts within patches.—The extent to which the
parasitoids encounter hosts at random within patches, and the importance of any
deviations from this, depends in part on the size of the patches relative to the
foraging area of the parasitoids. This introduces important questions of appro-
priate scales in host-parasitoid associations, which is discussed in more detail in
the companion article (Pacala and Hassell 1991).

(4) No interference between parasitoids or competition among hosts.—The
models in this article focus on situations in which interactions between host and
parasitoid populations are of predominant importance for the overall dynamics.
Any additional density-dependent and density-independent factors that markedly
influence fecundity and/or survival of the hosts and parasitoids will also affect
the dynamics and change the overall stability conditions. In neglecting these,
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our emphasis is primarily on understanding the extent to which one factor—the
distribution of parasitism among hosts—can contribute to population regulation.

A difficulty in applying the CV? > 1 criterion to situations in the field is the
scarcity of interactions in which it is practical to observe and quantify the distribu-
tion of searching time by adult female parasitoids (but see Waage 1983). The only
data usually available from the field are those of percent parasitism in relation to
host density per patch. The companion article (Pacala and Hassell 1991) shows
how the CV? > 1 rule may be applied directly to such data in order to evaluate
the contributions of HDD and HDI to population stability.

Heterogeneity has often been regarded as a complicating factor in population
models, and one that rapidly leads to analytical intractability. The present study
emphasizes that this need not be so; the end product of our analysis of the
dynamical effects of heterogeneity in host-parasitoid models with discrete genera-
tions is the simplest of criteria. It offers the hope that comparable, general rules
can be found for assessing the role of heterogeneity on the dynamics of a much
broader range of interactions among species.
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APPENDIX

For Model III in the text define X = Z[1 — {(a)]P*/P,, and calculate all expected values
on a per-host basis. Then

F(P,) = Eexp(—XP,/P¥). (AD)
Using a prime for a derivative,
F'(P*) = —E[(X/P*exp(—X)]. (A2)
The equation for equilibrium is
1/ = F(P*) = Eexp(—X). (A3)
Substituting equations (A2) and (A3) into stability condition (2a), we obtain
E[Xexp(—X)] < E[exp(—X)]E[1 — exp(—X)]. (A4)

Now if \ is near 1, equation (A3) implies that X must be small with high probability. From
the definition of X, this is achieved by having P* be small if no parameter other than \ is
varied. Mild regulatory conditions on the distribution of X now permit the exponentials in
(A4) to be expanded about zero to give

E[X(1 - X)I<E(l - X + X2 EX — X*2) + O(P ),
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which simplifies to
EX2/(EX)? > 2 + O(P%). (AS)
Now, to order P* (= order 1 — 1/X), equation (A5) is the requirement that CV% > 1.
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