LIGHT AND THE PHENOLOGY OF TROPICAL TREES

S. JOSEPH WRIGHT* and CAREL P. VAN SCHEIK†

*Smithsonian Tropical Research Institute, Unit 0948, APO AA 34002-0948, U.S.A., or Apartado 2072, Balboa, Republic of Panama; †Department of Biological Anthropology and Anatomy, Duke University, 3705 B Erwin Road, Durham, North Carolina 27705

Submitted March 18, 1992; Revised June 23, 1992; Accepted June 26, 1992

Abstract.—Tree phenologies from eight disparate tropical forests are consistent with the hypothesis that leaf and flower production have been selected to coincide with seasonal peaks of irradiance.

Plants that produce new organs when irradiance is maximal will realize two advantages. First, assimilation is greatest for a crop of new leaves before herbivory and senescence reduce leaf area and photosynthetic potential (Larcher 1973; Field 1987). Second, it is most efficient to transfer assimilates directly into growing organs rather than store them in different tissues first and mobilize and translocate them later (Chapin et al. 1990). Strong phenological selection results for light-limited understory plants, and in many deciduous forests understory plants produce leaves and flowers when the overstory is deciduous and understory irradiance is maximal (Janzen 1972). Seasonal variation in irradiance also occurs above forest canopies because of changes in cloud cover, day length, and solar angle. The effect on the phenologies of taller forest plants is unexplored. This article evaluates this effect for tropical forest trees.

Light-limited trees are predicted to produce new leaves and flowers during the season of maximal irradiance. Seed dispersal is not considered because its timing is confounded by selection for germination and seedling survival. Where rainfall seasonality is pronounced, dry-season drought constrains phenologies (Reich and Borchert 1984). Predictions are therefore evaluated separately for forests with strong rainfall seasonality. Tropical insect seasonality also increases with rainfall seasonality (Wolda 1988). Minimal insect activity and maximal irradiance often co-occur in the drier season, and the alternative hypothesis that reduced pest pressure selects for dry-season production is evaluated. First, however, two requisites for phenological selection are considered.

IRRADIANCE IN TROPICAL FOREST CANOPIES

Phenological selection requires predictable temporal variation in a limiting environmental factor. Correlations between plant performance and irradiance suggest
that light limits many tropical forest trees. Seed set increases with irradiance in Borneo (Wycherley 1973), the likelihood of a mast flowering increases with irradiance in peninsular Malaysia (van Schaik 1986), and trunk radial growth increases with irradiance in Surinam (Schulz 1960) and possibly Costa Rica (D. A. Clark and D. B. Clark, personal communication). These correlations are consistent with light limitation; however, co-varying environmental factors cannot be discounted.

Photosynthetic measurements also suggest that light limits many tropical forest trees. Photosynthesis by in situ canopy leaves becomes saturated with light at photosynthetic photon flux densities (PPFD) of 450–600 μmol m⁻² s⁻¹ for a wide variety of tropical forest trees (Oberbauer and Strain 1986; Pearcy 1987; K. Hogan, A. Smith, K. Winter, and G. Zotz, personal communication). Lower PPFD will limit photosynthesis. Radiant energy is extinguished exponentially with distance beneath forest canopies. Photosynthetically active radiation was reduced by 94% just 5 m into the canopy of a Puerto Rican wet forest (Johnson and Atwood 1970), and global radiation was reduced by 53% just 6 m into the canopy of a Malaysian rain forest (Yoda 1974; Aoki et al. 1975). More than 70% of PPFD measurements made for canopy leaves in tropical forests in Costa Rica and Australia were less than 400 μmol m⁻² s⁻¹ (Oberbauer and Strain 1986; Doley et al. 1987), and low PPFD associated with heavy cloud cover frequently limited wet-season photosynthesis by the canopy emergent Ceiba pentandra in central Panama (G. Zotz and K. Winter, personal communication). Self-shading, lateral shading by neighbors, and shading by lianas limit all but the uppermost leaves in tropical forests, and light interception by clouds can limit all leaves.

Predictable irradiance seasonality occurs throughout the tropics. Near the equator seasonal changes in cloud cover are a more important cause than seasonal changes in day length and solar angle (Miller and Feddes 1971; Hastenroth 1985). In central Panama, for example, global radiation averages 31% greater on the March equinox than on the September equinox because of seasonal changes in cloud cover (Windsor 1990). Global radiation averaged 50% greater in the highest than in the lowest month in a pantropical survey of 24 sites where forest is the potential vegetation (annual rainfall of more than 1,000 mm; compiled from Müller 1982). Irradiance seasonality controls seasonal variation in net primary production in tropical evergreen forests (Raich et al. 1991) and should be a strong selective pressure on phenology.

**WEAKLY SEASONAL FORESTS**

Weakly seasonal forests were defined to have minimum mean monthly rainfall of more than 60 mm. This criterion is widely used to identify tropical forests where seasonal water stress is unimportant (Schulz 1960; Nieuwolt 1977; Whitmore 1984) and is close to Walter's (1971) criterion of twice the average temperature. The null hypothesis that 25% of tree species center production in the three sunniest months was tested for four weakly seasonal forests for which species-level phenologies have been published. For the Ducke Forest Reserve in Brazil and Itabuna, Brazil, numbers of individuals with new organs were presented by month (Alvim and Alvim 1978; Alencar et al. 1979), and the the angle of the mean
vector was calculated. For La Selva, Costa Rica, and Piste St. Elie, French Guyana, the population-level presence or absence of new organs was presented by month (Frankie et al. 1974; Opler et al. 1980; Sabatier 1985), and the month on which production centered was calculated. These estimates of central tendency are problematical when production occurs in disjunct peaks and, for presence-absence data, when production continues for many months (arbitrarily set at more than 6 mo). Analyses were performed with and without these problematical cases. The 3-mo period with highest irradiance at Ducke, Piste St. Elie, and Itabuna was estimated from hours of sunshine for nearby weather stations at Manaus, Cayenne, and Salvador, respectively (Müller 1982). For La Selva, the assessment of Breitsprecher and Bethel (1990), which agreed with sunshine data for the three nearest weather stations (Coen 1983), was used.

The number of species that centered phenological activity during the 3 mo of peak sunshine was 1.35–2.88 times greater than expected, and the null hypothesis was invariably rejected (table 1). The effect became even stronger when the problematical cases defined above were included (not shown).

**STRONGLY SEASONAL FORESTS**

A strong contrast is expected between drought-sensitive and drought-tolerant species when irradiance is maximal during the dry season. Leaf and flower production are predicted to occur during the wet season for drought-sensitive species (Reich and Borchert 1984) and during the dry-season irradiance peak for drought-tolerant species. Rooting depths often separate drought-sensitive and drought-tolerant species. Rooting depths and phenologies have been documented in East Java and Venezuela at forested sites where irradiance is maximal during a 4- or 5-mo dry season. In East Java, species with shallow roots (less than 1.5 m) produced leaves in the wet season only (three species), while species with deeper roots produced leaves in the dry season only (six), year-round (two), or in the wet season only (two) (Coster 1923, 1932, 1933; Braak 1929). In Venezuela, deciduous species had shallow roots and produced leaves in the wet season only (eight) while evergreen species had deeper roots and produced leaves in the dry season only (three) or in the wet season only (one) (Monasterio and Sarmiento 1976; Sobrado and Cuenca 1979; Sobrado 1986). The null hypothesis that rooting depth and season of leaf production are independent is rejected ($G_{\text{adjusted}} = 6.75$, df = 1, $P < 0.01$; year-round and wet-season-only conservatively combined). Deeply rooted species tended to produce leaves during the dry-season irradiance peak.

The relation between phenology, irradiance, and drought sensitivity can be evaluated in greater detail for trees from Barro Colorado Island (BCI), Panama (9°9′N, 79°51′W). Minimum midday leaf water potentials ($\psi_{\text{min}}$) have been determined in the final month of the dry season for nine BCI tree species (Rundel and Becker 1987; Wright and Cornejo 1990; S. J. Wright, unpublished data) and are used to evaluate drought sensitivity. Comparisons of $\psi_{\text{min}}$ are limited to subcanopy (at most 20 m tall) and canopy (30 m tall or taller) trees to minimize complications associated with vertical gradients in vapor pressure deficits and gravitational potentials. New leaves were scored as present or absent in 208 weekly censuses of
TABLE 1

<table>
<thead>
<tr>
<th>Site</th>
<th>Leaf Flush</th>
<th>Flowering</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Observed</td>
<td>Expected</td>
</tr>
<tr>
<td>Ducke</td>
<td>14</td>
<td>6.75</td>
</tr>
<tr>
<td>La Selva</td>
<td>54</td>
<td>18.75</td>
</tr>
<tr>
<td>Itabuna</td>
<td>. .</td>
<td>. .</td>
</tr>
<tr>
<td>Piste St. Elie</td>
<td>. .</td>
<td>. .</td>
</tr>
</tbody>
</table>

Note.—Ellipses indicate that there are no data.

* For each contingency analysis, sample size is the expected value multiplied by four. Observed
and expected values for the 9 mo of lower insolation equal the sample size minus the appropriate
values from this table.

Species with year-round production are excluded because the central tendency is arbitrary for
population-level presence-absence data.

* $P < .05$.
** $P < .01$.
*** $P < .001$.

focal trees ($N = 8–46$ tree-years), and flowers were scored as present or absent
in 208 weekly censuses of 200 0.5-m² litter traps. Most lowland tropical trees
open flowers for just 1 d, so anthesis and flower fall coincide closely (Primack
1985). Barro Colorado Island has a single dry season, and the transitions between
seasons almost always occur in December and April–May (Windsor 1990). Daily
photosynthetically active radiation (PAR) averages 48\% greater in the dry season
than in the wet season (fig. 1). Drought-tolerant species are predicted to produce
leaves and flowers early in the dry-season PAR peak.

Observed and predicted phenologies agree closely (fig. 1). The canopy trees
Beilschmiedia pendula and Jacaranda copaia and the subcanopy tree Heisteria
concinnun had the most favorable dry-season water status (largest $\psi_{\text{min}}$). Both leaf
flush and flowering peaked between December and March for these species. The
canopy trees Dipteryx panamensis, Trichilia cipo, and Quararibea asterolepis
and the subcanopy tree Faramea occidentalis had the smallest $\psi_{\text{min}}$ for their
strata. Flowering occurred early in the wet season for all four species. Leaf flush
was either largely restricted to the wet season (D. panamensis, F. occidentalis)
or bimodal with peaks early in both seasons (T. cipo, Q. asterolepis). The soil
dries slowly over the first half of the dry season on BCI (Windsor 1990; Wright
1991), and water stress may limit T. cipo and Q. asterolepis only late in the dry
season (Rundel and Becker 1987). The canopy (Prioria copaifera; $-2.19$ MPa)
and subcanopy (Hirtella triandra; $-1.36$ MPa) trees with intermediate $\psi_{\text{min}}$
flushed leaves year-round and flowered in 11 or 12 mo (data not shown).

DISCUSSION

Tree phenologies from seven widely disparate tropical forests are consistent
with the hypothesis that leaf and flower production have been selected to coincide
with peak irradiance when water is available. In each of these forests, however, peak irradiance occurs during the drier season, when the activities of most tropical insects are much reduced (Wolda 1988). The alternative hypothesis that leaf production and flower production have been selected to coincide with minimal insect pest levels must be considered (Lieberman 1982; Aide 1988).

The two hypotheses can be evaluated for forests where peak irradiance and peak insect activities coincide. This is the case at Makokou, Gabon, where the long dry season is cloudy and the number of sunshine hours and insect biomass average 2.1 and 3.9 times greater during the wetter months, respectively (Hladik 1973; Charles-Dominique 1977). Community-wide flowering and leaf production

Fig. 1.—Tree phenologies, rainfall (closed circles), and PAR (open circles) for BCI. Open histograms represent the mean proportion of census individuals that flushed leaves ($N = 4$ yr). Solid histograms represent the mean proportion of annual trap records for flowers ($N = 4$ yr). Numbers in parentheses after species names are mean leaf water potentials (MPa) recorded at midday in the last month of the dry season ($N \geq 4$ individuals). The top three species had the largest values for their respective strata, the bottom four the smallest.
by 33 of 34 tree species were also concentrated in the wet season (Hladik 1973, 1978). It is unlikely that water stress limits plants during the long dry season at Makokou because heavy cloud cover reduces evapotranspiration to its annual low, and leaf fall is also at its annual low (Hladik 1973, 1978). Selection on plant phenologies by insect pests is well established. Nevertheless, Makokou phenologies suggest a more important role for irradiance. Data are needed from additional forests where insect and irradiance seasonalities coincide to evaluate this possibility.

**ACKNOWLEDGMENTS**

We have benefited from discussions with J. Denslow, A. Herre, J. Karr, and J. Terborgh. O. Calderon and B. DeLeon conducted phenology censuses on BCI. Grants from the Environmental Sciences and Scholarly Studies programs of the Smithsonian Institution supported fieldwork on BCI.

**LITERATURE CITED**


Associate Editor: F. Stuart Chapin III