

Stoichiometry (proportional elemental composition, e.g. C:N:P in biomass)

Originally introduced as an ecological concept by A. Redfield in 1934 in his study of marine phytoplankton. the *Redfield ratio* , *C:N:P = 106:16:1* (relative amounts of C, N, & P in phytoplankton)

Based on what we know now about marine v terrestrial residence times (and other things we know about these systems), what might we infer/guess about terrestrial vs. marine C:N:P?

Stoichiometry (proportional elemental composition, e.g. C:N:P in biomass)

Originally introduced as an ecological concept by A. Redfield in 1934 in his study of marine phytoplankton. the *Redfield ratio*, *C:N:P = 106:16:1* (relative amounts of *C*, N, & P in phytoplankton)

Much more recently applied to terrestrial systems: McGroddy et al. 2004 Forest Foliage C:N:P = 1200:28:1 (Global scale) Litter = 3000:45:1 (resorption) (higher C than in marine phytoplankton: reflecting importance of carbon-rich structural components - e.g. cellulose)

	SECTION 2 (N ₂ O)		T
		AR5 (2006/2011)	1
2006 N2O	Anthropogenic sources		
budget	Fossil fuel combustion and industrial processes	0.7 (0.2-1.8) ²	
	Agriculture	4.1 (1.7-4.8) ^b	
(IPCC 2013)	Biomass and biofuel burning	0.7(0.2-1.0) ^a	Note:
	Human excreta	0.2 (0.1-0.3) ^a	microbial!
	Rivers, estuaries, coastal zones	0.6 (0.1-2.9) ^c	
	Atmospheric deposition on land	0.4 (0.3-0.9) ^d	
	Atmospheric deposition on ocean	0.2 (0.1-0.4)°	
•	Surface sink	-0.01 (01)	
	Total anthropogenic sources	6.9 (2.7-11.1)	6.7 (+/- 1.3)
	Natural sources ^a		
	Soils under natural vegetation	6.6 (3.3-9.0)	
	Oceans	3.8(1.8-9.4)	
	Lightning	—	
	Atmospheric chemistry	0.6 (0.3-1.2)	
	Total natural sources	11.0 (5.4-19.6)	9.1 (+/- 1.0)
	Total natural + anthropogenic sources	17.9 (8.1–30.7)	15.8 (+/- 1.0)
	Stratospheric sink	14.3 (4.3-27.2)9	11.9 (+/- 0.9)
	Observed growth rate	3.61 (3.5-3.8) ^h	4.0 (+/- 0.5)

