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Biogeochemistry: Key concepts
and methods
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Biogeochemical cycles (Saleska)
A. Method: Box models & Residence time
B. Budgets and cycles: water, carbon, nitrogen
C. Ecological Stoichiometry

IT. Thermodynamics of Biogeochemical

Reactions (guest Prof. Chorover)

I. What is Biogeochemistry?

Biogeochemistry = the study of how the cycling of

hydrosphere atmosphere biosphere pedosphere lithosphere

Key Names

Vladimir Vernadsky (1863-1945): Russian scientist
known as the "father of biogeochemistry”, invented the
terms geosphere, biosphere, and "noosphere”

G. Evelyn Hutchinson (1903-1991): famous limnologist
(considered to be founder of limnology) (also studied
the question of how biological species coexist)




A. Box models and Residence times

Steady-state: when flow (of water, nutrients, energy)
through a 'box’ (a lake, the atmosphere, a population or
organisms) is steady, i.e.:

inflow () = outflow (F~,,,)
- box size (or stock S) doesn't change

Then residence time T (the time it would take for the flow to
fill the box if the box were empty) is the ratio of the stock in
the box, to the flow: (using consistent units)

E MS = sec

U= F grdims sec!

A. Box models and Residence times
Example 1: Students at University

Given 30,000 student-body population (stock), about how
many graduate each year? (what is the flow?)

Example 2: Land and sea autotrophs have roughly equal global
productivities (NPP,,,4 60 PgC/yr; NPP,, ~ 50 PgC/yr), but big
differences in total biomass carbon (560 PgC on land vs 3 PgC in the sea)

560 PgC
60 PgC/yr

3 PgC

Why? Residence time! Land: T

~10 yrs; Sea: = 0.06 yrs
(24 days)
Example 3: Zooplankton (residence time 6 mo) graze phytoplankton
(residence time 2 weeks) in a lake. Zooplankton consume 40% of
phytoplankton NPP, with a carbon-use efficiency of 25% (meaning

25% is converted to biomass)

What is the ratio of the zooplankton to phytoplankton population biomass?

For more: see J. Harte, 1985. Consider a Spherical Cow




B. Budgets and Cycles

How important is your biochemical/microbial

process?

-- Compare it to the size of appropriate cycle!
(can be done locally and globally)

Overview: global cycles of nitrogen, water, and
carbon (including some associated stock, flow, and
residence times)
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Facts about the global water cycle

496 XA].O?’ kms3

» Global precip: 38é,OOO (ocean) + 111,006 (land)
496 x 103 km3 + 5\10 x 106 kmf = O.\97 x 103 kmj

Y hd
Earth surface area = 1 meter of precip
(global average)

e Land area is 148 x 10 km? > 111+148 = 0.75 m
average land precip
— Comparison: Tucson gets 0.30 m,
- tropical forests 2 or 3 m

Chapin, et al. 2002

Annual Total Precipitation

Atlas of the Biosphere

Center for Sustainability and the Global Environment
University of Wiconsin - Madton




Overview: The Modern Global carbon cycle (1990s)
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What is residence time of C in atmosphere?
One estimate is from land+ocean flux: 120+70=190; 597/190 = 3yrs

Better: 597 / 2.2 = 270 years.

BUT: this is not an estimate of removal rate to ocean of excess CO, (2.2).

But in truth, for CO,, no single residence time.

Note: 1990s values (IPCC 2007, Ch. 7)
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What is residence time of C in atmosphere?

One estimate is from land+ocean flux: 120+70=190; 597/190 = 3yrs

BUT: this is not an estimate of removal rate to ocean of excess CO, (2.2).
Better: 597 / 2.2 = 270 years.

NP = But in fruth, for CO,, no single residence time.
GPP'RQuTo 120 l T 1 J
= 120-60 19.6 g i 15
= 60 ge | o

| 70| 222 |2
Veg = 560
Soil=1740

| — -

Carbon Residence times:
Land Veg: (stock)560/NPP(60) = 9.3 yrs
Land Soil: 1740/60 = 30 yrs

Marine biota = 3/50 = 0.06 y = 21d

All surface ocean: 900/(70+100) = 5 yrs

Deep Ocean: 37,000 / 100 = 370 years
Geosphere: 15x106 / 0.2 = 75 Myrs

Values in black are natural,(values in redjare anthropogenic

Note: 1990s values (IPCC 2007, Ch. 7)

Biological flows of Nitrogen
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Global Change and the N-cycle
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Beyond Carbon: Scientists Worry About Nitrogen's "The nitrogen dilemma is

Effects not just thinking that

' 2 a1 ¥ carbon is all that
matters. But also
= thinking that global
warming is the only
environmental issue. The
weakening of biodivers-
ity, the pollution of
rivers... Smog. Acid rain.
Coasts. Forests. It's all
nitrogen.”
8 cun - Peter Vitousek
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Hir Bias/Reuters

ina, & buileup caused by too much nitragen inthe Yellow Sea.

By RICHARD MORBAN
Published: September 1, 2008

TOOLIK FIELD STATION, Alaska — As Anne Giblin was lugging

Global Change and the N-cycle

Human alteration of terrestrial N-cycle is LARGE
(> 100% in fixation relative to the background rate
of 50-100 Tg N/yr):
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C. Stoichiometry (proportional elemental
composition, e.g. C:N:P in biomass)

(because biogeochemical cycles do not
exist in isolation, but are coupled)

Example: Integrated
N-C cycle

N Uptake /

assimilation

photosynthesis

+ H.0 + C106H2630110N16P1

Respiration / “organic N" and
mineralization “organic C" are
(of Cand N) the same stuff!

C. Stoichiometry (proportional elemental
composition, e.g. C:N:P in biomass)

Stoichiometry:
Greek: stoikheion (element)
+ metron (measure)

ecological stoichiometry: definite
proportions of elemental combinations, a
constraint on biogeochemistry of life, from
the cell to the organism to the biosphere

(broader concept than the stoichiometry of
balancing a chemical reaction)

11



C. Stoichiometry (proportional elemental
composition, e.g. C:N:P in biomass)

Originally introduced as an ecological concept by A.
Redfield in 1934 in his study of marine phyto-
plankton. the Redfield ratio , C:N.P = 106.16.1

(relative amounts of C, N, & P in phytoplankton)

Based on what we know now about marine v
terrestrial residence times (and other things we
know about these systems), what might we
infer/quess about terrestrial vs. marine C:N:P ?

C. Stoichiometry (proportional elemental
composition, e.g. C:N:P in biomass)

Originally intfroduced as an ecological concept by A.
Redfield in 1934 in his study of marine phyto-
plankton. the Redfield ratio , C:N:P = 106.:16:1

(relative amounts of C, N, & P in phytoplankton)

Much more recently applied to terrestrial systems:
McGroddr et al. 2004

Forest Foliage C:N:P = 1200:28:1 (Global scale)
Litter = 3000:45:1 (resorption)

(higher C than in marine phytoplankton: reflecting importance
of carbon-rich structural components - e.g. cellulose)




Next...

Thermodynamics of
Biogeochemical reactions

Fun problem in global biogeochemistry:
How likely is it that in your next breath, you will inhale at
least one molecule of nitrogen (N,) that Julius Caesar
exhaled in his last breath?

(Julius Caesar, the famous Roman emperor, was
assassinated on March 15, 44 BC by a group of Roman
senators).

This requires some basic chemistry:

1 mole of air is 6.02 x 1023 molecules

At STP, 1 mole occupies ~22 liters.

Also helpful: whole atmosphere: 1.8 x 102 moles of air
What is atmospheric mixing ratio of N,?

What is N, mixing time in the atmosphere?

What is N, residence time in the atmosphere?

From J. Harte, 2001. Consider a Cylindrical Cow

13



First, the concentration, in the whole atmosphere, of
Caesar's last-breath N, molecules
#N, moleculesin Caesar's lastbreath

#molecules inwhole atmosphere

Concentration =

(1L of airinbreath) j N: (1220'_' a_lrj(6><1023molecules/ mol )
air alr

_ - 22
- 20 - 23 ~2x10
(1.8x10* mols air / atmosphere ) (6 10** molecules / mol )

Next, the average number you inhale per breath =
Concentration (molecules Caesar 's N 2/ molecules air) x (# molecules inhaled )

- (2><10‘22)xK1Lx 1mol air J(6x1023molecules/ mol)}

22 L air

z(2x10*22)x(2.7x1022) =5.4~5

So on average you inhale 5 molecules of Caesar's-breath N, in every
breath!

From J. Harte, 2001. Consider a Cylindrical Cow
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