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1)  Indirect	
  molecular	
  inference:	
  
	
  a.	
  16S	
  -­‐>	
  funcPonal	
  guilds	
  
	
  b.	
  gene	
  ecology	
  (of	
  known	
  funcPonal	
  genes)	
  
	
  c.	
  transcripPonal	
  and	
  translaPonal	
  acPvity	
  (of	
  known	
  funcPonal	
  genes)	
  

2) direct	
  molecular	
  inference:	
  
	
   	
  a.	
  SIP	
  

3)	
  	
  	
  direct	
  physiological	
  measurement:	
  
	
   	
  a.	
  culture	
  based	
  charactrizaPon	
  
	
   	
  b.	
  Ecolog	
  plate	
  substrate	
  uPlizaPon	
  
	
   	
  c.	
  enzyme	
  assays	
  

4)  indirect	
  physiologial	
  measurement:	
  
	
   	
  a.	
  biomolecule	
  isotopic	
  signatures	
  
	
   	
  b.	
  emi"ed	
  product	
  isotopic	
  signatures	
  

5)	
  	
  	
  modeled	
  linkages	
  	
  -­‐	
  Moira	
  Hough	
  will	
  tell	
  us	
  about	
  this	
  

A	
  way	
  I	
  think	
  about	
  some	
  of	
  the	
  methods	
  
involved	
  in	
  connecPng	
  them:	
  



Figure	
  1	
  in	
  Bodelier	
  2011	
  (opPonal	
  
reading	
  on	
  D2L):	
  “…important	
  elements	
  
in	
  elucidaPng	
  the	
  role	
  of	
  microbial	
  
diversity	
  in	
  ecosystem	
  funcPoning.	
  	
  

“Crucial	
  element	
  is	
  the	
  applica1on	
  of	
  a	
  
Func1onal	
  Biodiversity	
  concept	
  to	
  link	
  
microbial	
  diversity	
  to	
  ecosystem	
  
func1oning.	
  This	
  approach	
  will	
  facilitate	
  
predic1ve	
  ecosystem	
  modeling	
  and	
  will	
  be	
  
fostered	
  by	
  omics	
  techniques.	
  However,	
  to	
  
make	
  this	
  conceptual	
  step	
  the	
  mechanis1c	
  
insight	
  into	
  what	
  is	
  going	
  on	
  in	
  the	
  “black	
  
box”	
  being	
  the	
  structure	
  and	
  func1oning	
  of	
  
microbial	
  communi1es	
  and	
  underlying	
  
popula1ons	
  and	
  cells,	
  needs	
  to	
  be	
  
elucidated.	
  ApplicaPon	
  of	
  ecological	
  theory,	
  
conceptual	
  experimental	
  design,	
  novel	
  
methodology,	
  and	
  mathemaPcal	
  modeling	
  
will	
  be	
  the	
  key	
  to	
  gain	
  access	
  to	
  the	
  
knowledge	
  in	
  the	
  “Black	
  box.”	
  

Paul	
  
Bodelier’s	
  
way:	
  



“ 	
  …five	
  [four]	
  stages	
  of	
  environmental	
  
microbiological	
  inquiry	
  leading	
  to	
  advances	
  in	
  
biogeochemistry:	
  

•	
  Stage	
  1.	
  Discovery	
  of	
  new	
  microbiological	
  process.	
  Prove	
  that	
  
microorganisms	
  are	
  capable	
  of	
  catalyzing	
  the	
  process	
  of	
  interest.	
  This	
  is	
  achieved	
  via	
  
laboratory	
  incubaPon	
  of	
  environmental	
  samples	
  and/or	
  via	
  chemical	
  or	
  biomarker	
  assays	
  
performed	
  on	
  complex,	
  uncharacterized	
  microbial	
  communiPes	
  accompanied	
  by	
  
materials	
  from	
  soils,	
  sediments,	
  or	
  waters.	
  

•	
  Stage	
  2.	
  ValidaPon	
  of	
  the	
  discovery	
  by	
  finding	
  representaPve	
  
microbiological	
  agents.	
  Refine	
  the	
  test	
  system	
  by	
  isolaPng	
  a	
  single	
  microorganism	
  
capable	
  of	
  catalyzing	
  the	
  process	
  or	
  obtaining	
  a	
  simplified,	
  highly	
  enriched	
  consorPum	
  of	
  
microbial	
  populaPons	
  exhibiPng	
  the	
  process	
  or	
  via	
  a	
  convincing	
  combinaPon	
  of	
  
biomarkers	
  and	
  physiological	
  evidence.”	
  

Eugene	
  	
  Madsen’s	
  way:	
  
From	
  Madsen	
  2011	
  (opPonal	
  reading	
  on	
  D2L)	
  



•	
  Stage	
  3.	
  CharacterizaPon	
  of	
  agents	
  and	
  the	
  physiological,	
  
biochemical,	
  and/or	
  genomic	
  mechanisms	
  of	
  the	
  biogeochemical	
  
process(es)	
  they	
  catalyze.	
  Use	
  of	
  controlled	
  laboratory	
  incubaPons,	
  chemical	
  
assays,	
  isotopic	
  tracers,	
  biomarkers,…	
  bioinformaPcs	
  to	
  define	
  metabolites,	
  metabolic	
  
pathways,	
  enzymaPc	
  reacPons,	
  and	
  the	
  genePc	
  basis	
  of	
  cellular	
  processes.	
  

•	
  Stage	
  4.	
  Field	
  verificaPon	
  of	
  ecological	
  
relevance	
  of	
  agents	
  and/or	
  their	
  
biogeochemical	
  impact.	
  Apply	
  the	
  tools,	
  insights,	
  
biomarker	
  analyses	
  from	
  Stage	
  3	
  to	
  real-­‐world	
  field	
  sites	
  
where	
  microbiological	
  agents	
  (specific	
  taxa	
  and/or	
  their	
  
funcPonal	
  genes)	
  are	
  influencing	
  ecological	
  condiPons.	
  

•	
  Stage	
  5.	
  Biotechnological	
  innovaPon	
  and/or	
  improved	
  site	
  
management	
  based	
  on	
  understanding	
  biogeochemical	
  process	
  
mechanisms.	
  In	
  some	
  instances	
  microbial-­‐mediated	
  processes	
  can	
  be	
  transplanted	
  
from	
  their	
  ecosystem	
  contexts	
  to	
  human-­‐engineered	
  sejngs	
  for	
  commercial	
  or	
  industrial	
  
applicaPons.	
  



Five	
  key	
  approaches	
  in	
  environmental	
  microbiology	
  “tool	
  box”	
  
	
  
Site	
  geochemistry: 	
  AnalyPcal	
  chemistry	
  proves	
  presence	
  of	
  compounds	
  indicaPve	
  of	
  microbial	
  
process	
  (reinforced	
  by	
  flux	
  data	
  and	
  isotopic	
  fracPonaPon	
  pa"erns).	
  
	
  
Cul1va1on: 	
  Provision	
  of	
  appropriate	
  nutrients	
  in	
  liquid	
  or	
  solid	
  media	
  allows	
  isolaPon	
  of	
  
microorganisms	
  catalyzing	
  process	
  of	
  interest	
  (e.g.	
  denitrificaPon	
  or	
  benzene	
  biodegradaPon).	
  
	
  
Incuba1ons: 	
  Placing	
  environmental	
  samples	
  or	
  pure	
  cultures	
  in	
  sealed,	
  laboratory	
  vessels	
  
allows	
  documentaPon	
  of	
  physiological	
  changes	
  (e.g.	
  methane	
  generaPon	
  or	
  consumpPon)	
  effected	
  
by	
  microorganisms.	
  
	
  
Biomarkers: 	
  ExtracPon	
  and	
  analysis	
  of	
  key	
  cellular	
  consPtuents.	
  These	
  provide	
  insights	
  into	
  the	
  
taxonomic	
  composiPon	
  and/or	
  funcPonal	
  potenPal	
  of	
  microorganisms	
  by	
  focusing	
  upon	
  
phospholipid	
  fa"y	
  acids,	
  DNA,	
  ribosomal	
  RNA,	
  messenger	
  RNA,	
  or	
  proteins	
  followed	
  by	
  GC/MS,	
  LC/
MS	
  and/or	
  various	
  molecular	
  biology	
  procedures	
  ranging	
  from	
  small-­‐scale	
  sequencing	
  to	
  high-­‐
throughput	
  meta-­‐genomics,	
  meta-­‐transcriptomics,	
  and	
  meta-­‐proteomics.	
  
	
  
Microscopy: 	
  Allows	
  images	
  of	
  microorganisms	
  and	
  cell	
  associaPons	
  to	
  be	
  obtained	
  from	
  site	
  
samples	
  or	
  laboratory	
  incubaPons.	
  Depending	
  upon	
  analyPcal	
  approach	
  and	
  staining	
  targets,	
  
informaPon	
  yielded	
  includes	
  enumeraPon,	
  idenPty	
  (e.g.	
  via	
  small	
  subunit	
  rRNA	
  FISH	
  probes),	
  
localizaPon	
  of	
  biomarkers	
  within	
  cells,	
  and	
  cell-­‐specific	
  substrate	
  incorporaPon	
  (e.g.	
  via	
  secondary	
  
ion	
  mass	
  spectrometry).	
  

Eugene	
  Madsen’s	
  take	
  on	
  env.	
  microbiologist	
  toolbox	
  

Box	
  1	
  From	
  Madsen	
  2011	
  (opPonal	
  reading	
  on	
  D2L)	
  



a.	
  16S	
  -­‐>	
  func1onal	
  guilds	
  

1.	
  Indirect	
  molecular	
  inference	
  

Wikipedia	
  defines	
  ecological	
  guilds	
  as:	
  
	
  -­‐	
  	
  “any	
  group	
  of	
  species	
  that	
  exploit	
  the	
  same	
  resources,	
  omen	
  in	
  related	
  ways”	
  
	
  -­‐	
  they	
  may	
  or	
  may	
  not	
  occupy	
  the	
  similar	
  niches	
  	
  
	
  -­‐	
  “defined	
  by	
  locaPons,	
  a"ributes,	
  and	
  acPviPes	
  of	
  component	
  species;	
  e.g.	
  mode	
  

of	
  acquiring	
  nutrients,	
  mobility,	
  and	
  habitat	
  zones”	
  
	
  -­‐	
  “does	
  not	
  typically	
  have	
  strict,	
  or	
  even	
  clearly	
  defined	
  boundaries.	
  A	
  broadly-­‐

defined	
  guild	
  will	
  pracPcally	
  always	
  have	
  consPtuent	
  guilds;	
  for	
  example,	
  grazing	
  guilds	
  
will	
  have	
  some	
  species	
  that	
  concentrate	
  on	
  coarse,	
  plenPful	
  forage,	
  while	
  others	
  
concentrate	
  on	
  low-­‐growing,	
  finer	
  plants.”	
  

 319"
Fig. 1 (A) Average daily CH4 emissions, (B) δ13C composition of emitted CH4, and (C) relative 320"
abundance of methanogenic groups as inferred by taxonomic identity assigned from 16S rRNA 321"
amplicon sequencing, for a permafrost thaw sequence at Stordalen Mire. 322"
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PCR	
  +	
  sequencing	
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  BLAST	
  	
  



1.	
  Indirect	
  molecular	
  inference	
  
b.	
  gene	
  ecology	
  (of	
  known	
  func1onal	
  genes)	
  

Have	
  to	
  back	
  up	
  a	
  sec.	
  to	
  recap	
  Metagenomics	
  

MICROBES	
  

High	
  throughput	
  	
  
Sequencing…	
  



SEQUENCES	
  
	
  

ASSEMBLY	
  



Metagenome	
  assembly	
  



Metagenome	
  assembly	
  



Metagenome	
  assembly	
  



SEQUENCES	
  
	
  

ASSEMBLY	
  



AnnotaPon	
  is	
  no	
  small	
  feat	
  

There	
  are	
  many	
  
many	
  many	
  many	
  

reference	
  	
  databases	
  

One	
  small	
  example	
  from	
  JCVI:	
  

•  What	
  is	
  IN	
  those	
  databases	
  is	
  not	
  a	
  
random	
  broad	
  swath	
  of	
  what’s	
  in	
  
nature…	
  

•  The	
  annotaPon	
  accuracy	
  is	
  inconsistent	
  
•  How	
  similar	
  does	
  something	
  have	
  to	
  be	
  

to	
  infer	
  similar	
  funcPon?	
  
•  Higher-­‐level	
  funcPonal	
  organizaPon	
  is	
  

spo"y	
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Comparative Metagenomics of
Microbial Communities

Susannah Green Tringe,1,2* Christian von Mering,3*
Arthur Kobayashi,1 Asaf A. Salamov,1 Kevin Chen,4

Hwai W. Chang,5 Mircea Podar,5 Jay M. Short,5 Eric J. Mathur,5

John C. Detter,1 Peer Bork,3 Philip Hugenholtz,1

Edward M. Rubin1,2.

The species complexity of microbial communities and challenges in culturing
representative isolates make it difficult to obtain assembled genomes. Here
we characterize and compare the metabolic capabilities of terrestrial and
marine microbial communities using largely unassembled sequence data
obtained by shotgun sequencing DNA isolated from the various environ-
ments. Quantitative gene content analysis reveals habitat-specific finger-
prints that reflect known characteristics of the sampled environments. The
identification of environment-specific genes through a gene-centric compar-
ative analysis presents new opportunities for interpreting and diagnosing
environments.

Despite their ubiquity, relatively little is known
about the majority of environmental micro-
organisms, largely because of their resistance to
culture under standard laboratory conditions. A
variety of environmental sequencing projects
targeted at 16S ribosomal RNA (rRNA) (1, 2)
has offered a glimpse into the phylogenetic
diversity of uncultured organisms. The direct
sequencing of environmental samples has

provided further valuable insight into the life-
styles and metabolic capabilities of uncultured
organisms occupying various environmental
niches. The latter efforts include the sequenc-
ing of individual large-insert bacterial artifi-
cial chromosome (BAC) clones as well as
small-insert libraries made directly from envi-
ronmental DNA (3–7). The application of
high-throughput shotgun sequencing environ-
mental samples has recently provided global

views of those communities not obtainable
from 16S rRNA or BAC clone–sequencing
surveys (6, 7). The sequence data have also
posed challenges to genome assembly,
which suggests that complex communities
will demand enormous sequencing expend-
iture for the assembly of even the most
predominant members (7).

A practical question emerging from envi-
ronmental sequencing projects is the extent to
which the data are interpretable in the absence
of significant individual genome assemblies.
Most microbial communities are extremely
complex and thus not amenable to genome
assembly (8). This obstacle may in part be
offset by the high gene density of prokaryotes
EÈ1 open reading frame per 1000 base pairs
(bp)^ and currently attainable read lengths (700
to 750 bp), which result in most individual
sequences containing a significant portion of at

Fig. 1. Species complexity. Rarefaction curves
of bacterial 16S rRNA clone sequences for soil
and whale fall samples. (Inset) Rarefaction
curve for all 1700 soil clones. The three whale
falls are: 1, Santa Cruz Basin bone; 2, Santa Cruz
Basin microbial mat; and 3, Antarctic bone.

Fig. 2. Identification of
orthologous groups
with greater sequencing
depth. The number of
orthologous groups ob-
served at least once is
shown as a function of
the raw sequence gen-
erated. Numbers in
parentheses indicate
lower limits of the total
number of groups in the
sample.
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Fig. S6.  Two-way clustering of data based on (A) COGs and (B) operons. 

 

 

 

e.g.	
  Tringe	
  et	
  al	
  2005,	
  Science	
  

1.	
  Indirect	
  molecular	
  inference	
  
b.	
  gene	
  ecology	
  (of	
  known	
  func1onal	
  genes)	
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1.	
  Indirect	
  molecular	
  inference	
  
c.	
  transcrip1onal	
  and	
  transla1onal	
  ac1vity	
  (of	
  known	
  func1onal	
  
genes)	
  

Metagenomics	
  is	
  just	
  the	
  first	
  level	
  



1.	
  Indirect	
  molecular	
  inference	
  
c.	
  transcrip1onal	
  and	
  transla1onal	
  ac1vity	
  (of	
  known	
  func1onal	
  
genes)	
  

microbial	
  communi,es	
  

bacteria	
  &	
  archaea	
  viruses	
   eukaryotes	
  

transcriptome	
   transcriptome	
  transcriptome	
  

genome	
   genome	
  genome	
  DNA	
  

RNA	
  

proteome	
   proteome	
  proteome	
  protein	
  

Metagenomics	
  is	
  just	
  the	
  first	
  level	
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An	
  example	
  from	
  the	
  site	
  of	
  McCalley	
  et	
  al	
  	
  

The	
  proteome	
  of	
  the	
  methanogens	
  present	
  

(=	
  ~98%	
  methane	
  
metabolism)	
  



• Purpose:	
  to	
  idenPfy	
  the	
  organisms	
  responsible	
  for	
  a	
  given	
  chemical	
  
transformaPon	
  

• Method	
  principle:	
  if	
  you	
  incubate	
  a	
  “wild”	
  community	
  with	
  a	
  stable	
  
isotope-­‐enriched	
  substrate,	
  the	
  organisms	
  that	
  transform	
  that	
  
substrate	
  will	
  become	
  labeled	
  by	
  the	
  stable	
  isotope.	
  You	
  can	
  then	
  
separate	
  the	
  labeled	
  biomolecules	
  of	
  those	
  organisms	
  from	
  the	
  rest	
  of	
  
the	
  community.	
  These	
  biomolecules	
  can	
  inform	
  you	
  about	
  the	
  idenPty	
  
and	
  genePc	
  content	
  of	
  the	
  chemically	
  acPve	
  organisms.	
  	
  

2.	
  Direct	
  molecular	
  inference	
  
a.	
  Stable	
  isotope	
  probing	
  (“SIP”)	
  



2005	
  in	
  NRMicro	
  

Substrate	
  eg:	
  13CH4	
  
IncubaPon	
  Pme	
  eg:	
  16	
  
days	
  	
  



2005	
  in	
  NRMicro	
  

Metagenomics	
  
without	
  cloning	
  



• Purpose:	
  to	
  idenPfy	
  the	
  organisms	
  responsible	
  for	
  a	
  given	
  chemical	
  
transformaPon	
  

• Method	
  principle:	
  if	
  you	
  incubate	
  a	
  “wild”	
  community	
  with	
  a	
  stable	
  
isotope-­‐enriched	
  substrate,	
  the	
  organisms	
  that	
  transform	
  that	
  
substrate	
  will	
  become	
  labeled	
  by	
  the	
  stable	
  isotope.	
  You	
  can	
  then	
  
separate	
  the	
  labeled	
  biomolecules	
  of	
  those	
  organisms	
  from	
  the	
  rest	
  of	
  
the	
  community.	
  These	
  biomolecules	
  can	
  inform	
  you	
  about	
  the	
  idenPty	
  
and	
  genePc	
  content	
  of	
  the	
  chemically	
  acPve	
  organisms.	
  	
  

• Caveats:	
  (a)	
  incubaPon	
  Pme	
  is	
  a	
  bugaboo	
  –	
  cross-­‐feeding	
  of	
  
biomolecules	
  can	
  muddy	
  the	
  signal	
  over	
  Pme.	
  How	
  long	
  depends	
  on	
  
the	
  organisms,	
  their	
  growth	
  rates,	
  and	
  their	
  trophic	
  interacPons.	
  (b)	
  
some	
  reacPons	
  are	
  catalyzed	
  without	
  incorporaPon	
  of	
  the	
  labeled	
  	
  
atom	
  (e.g.	
  by	
  exoenzymes).	
  (c)	
  orgs	
  that	
  feed	
  on	
  a	
  diversity	
  of	
  
substrates	
  may	
  not	
  be	
  sufficiently	
  labeled	
  (d)	
  important	
  to	
  use	
  ambient	
  
concentraPons	
  of	
  substrate	
  or	
  you’re	
  doing	
  an	
  enrichment…	
  

a.	
  Stable	
  isotope	
  probing	
  (“SIP”)	
  

2.	
  Direct	
  molecular	
  inference	
  





1)  Indirect	
  molecular	
  inference:	
  
	
  a.	
  16S	
  -­‐>	
  funcPonal	
  guilds	
  
	
  b.	
  gene	
  ecology	
  (of	
  known	
  funcPonal	
  genes)	
  
	
  c.	
  transcripPonal	
  and	
  translaPonal	
  acPvity	
  (of	
  known	
  funcPonal	
  genes)	
  

2) direct	
  molecular	
  inference:	
  
	
   	
  a.	
  SIP	
  

3)	
  	
  	
  direct	
  physiological	
  measurement:	
  
	
   	
  a.	
  culture	
  based	
  charactrizaPon	
  
	
   	
  b.	
  Ecolog	
  plate	
  substrate	
  uPlizaPon	
  
	
   	
  c.	
  enzyme	
  assays	
  

4)  indirect	
  physiologial	
  measurement:	
  
	
   	
  a.	
  biomolecule	
  isotopic	
  signatures	
  
	
   	
  b.	
  emi"ed	
  product	
  isotopic	
  signatures	
  

5)	
  	
  	
  modeled	
  linkages	
  	
  -­‐	
  Moira	
  Hough	
  will	
  tell	
  us	
  about	
  this	
  

A	
  way	
  I	
  think	
  about	
  some	
  of	
  the	
  methods	
  
involved	
  in	
  connecPng	
  them:	
  



3.	
  Direct	
  physiological	
  measurement	
  
a.	
  culture-­‐based	
  characteriza1on	
  

composite of several types, according to aspects
of their physiology: (i) diatom analogs—large
phytoplankton that require silica, (ii) other large
eukaryotes, (iii) Prochlorococcus analogs—small
phytoplankton that cannot assimilate nitrate, and
(iv) other small photo-autotrophs. The large-scale
biogeography of the emergent phytoplankton
community was plausible with respect to obser-
vations (Fig. 1B) and consistent among the 10
ensemble members. The model successfully cap-
tured the domination of annual biomass by large
phytoplankton in subpolar upwelling regions,
where both light and macronutrients are season-
ally plentiful. The subtropical oceans were domi-
nated by small phytoplankton functional types
(14). Large areas of the tropics and subtropics
were dominated by several Prochlorococcus
analogs (Fig. 1C), also in accord with observa-
tions (15, 16). Along the cruise track of At-
lantic Meridional Transect 13 (AMT13), total
Prochlorococcus abundance (the sum of all

Prochlorococcus analogs) qualitatively and quan-
titatively reflected the major features of the ob-
served distribution with highest abundances in
the most oligotrophic (nutrient-depleted) waters
(15, 17) (Fig. 2, A to D).

Real-world Prochlorococcus exhibit genetic
diversity, which leads to differences in light and
temperature sensitivities (17–20), as well as ni-
trogen assimilation abilities (21). The strains, or
ecotypes, of Prochlorococcus exhibit distinct pat-
terns of abundance along ocean gradients (15, 17),
and observations on AMT13 (17) (Fig. 2, E, G,
I, and K) provide an ideal test for the stochastic
modeling strategy: Do the emergent model ana-
logs of Prochlorococcus reflect the geographic
distributions, relative abundances, and physio-
logical properties of their real-world counterparts?

Of the Prochlorococcus analogs initialized in
each model solution, between three and six var-
iants persisted with significant abundances (fig.
S4). We grouped the analogs by defining three

“model ecotypes” based only on distinct geo-
graphic habitats, without regard to physiology,
which had a qualitative resemblance to the ob-
served distributions of ecotypes along AMT13.
In any ensemble member, more than one emer-
gent Prochlorococcus analog may fall into a
particular model-ecotype classification, and some
were ambiguous. Model ecotype m-e1 (Fig. 2F)
was defined to include emergent analogs with
significant biomass in the upper 25 m along the
transect between 15°N and 15°S, qualitatively
corresponding to the habitat of real-world eco-
type eMIT9312 (Fig. 2E). Model ecotype m-e2
(Fig. 2H) included analogs that had significant
biomass in surface waters polewards of 15o but
low biomass within 15o of the equator, broadly
reflecting eMED4 (Fig. 2G). Finally, model eco-
type m-e3 (Fig. 2J) was defined to include ana-
logs that had a subsurface maximum biomass, in
common with eMIT9313 and eNATL2A (Fig. 2,
I and K). The observed widespread distribution
of deep maxima with low abundance associated
with eMIT9313 and eNATL2A was not clearly
reflected in the model analogs. This might be
explained by the tendency toward unrealistically
complete competitive exclusion typical in eco-
system models (22, 23), precluding persistent
populations at low abundance. There is a deep,
high biomass layer in the model made up of
other, nitrate-consuming, small phytoplankton.
This may partially reflect a contribution from
nitrate-utilizing Prochlorococcus, which have re-
cently been inferred from ocean observations (24),
but which have not yet been seen in culture.

Fig. 2. Observed and modeled properties along the AMT13 cruise track. Left column shows
observations (17), right column shows results from a single model integration. (A and B) Nitrate
(mmol kg−1); (C and D) total Prochlorococcus abundance [log (cells ml−1)]. (E, G, I, and K)
Distributions of the four most abundant Prochlorococcus ecotypes [log (cells ml−1)] ranked
vertically. (F, H, and J) The three emergent model ecotypes ranked vertically by abundance. Model
Prochlorococcus biomass was converted to cell density assuming a quota of 1 fg P cell−1 (27). Black
lines indicate isotherms.

Fig. 3. Optimum temperature and light inten-
sity for growth, Topt and Iopt, of all initialized
Prochlorococcus analogs (all circles) from the
ensemble of 10 model integrations. Large
circles indicate the analogs that exceeded a
total biomass of 106 mol P along AMT13 in the
10th year. Colors indicate classification into
model ecotypes (see main text): Red circles, m-e1;
blue circles, m-e2; green circles, m-e3. Mixed-
color and solid black circles denote ambiguity in
model-ecotype classification. Bold diamonds indi-
cate real-world Prochlorococcus ecotypes (red,
eMIT9312; blue, eMED4; green, eNATL2A; and
yellow, eMIT9313).
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  Direct	
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b.	
  Ecolog	
  plate	
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                                                Microbial Community Analysis 

 

 
EcoPlate™

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
INTRODUCTION 
 

Microbial communities provide useful information about 
environmental change.  Microorganisms are present in 
virtually all environments and are typically the first organisms 
to react to chemical and physical changes in the environment.  
Because they are near the bottom of the food chain, changes in 
microbial communities are often a precursor to changes in the 
health and viability of the environment as a whole. 
 
The Biolog EcoPlate™ (Figure 1) was created specifically for 
community analysis and microbial ecological studies.  It was 
originally designed at the request of a group of microbial 
ecologists that had been using the Biolog GN MicroPlate�, 
but wanted a panel that provided replicate sets of tests1.   
 
Community analysis using the Biolog MicroPlates was 
originally described in 1991 by J. Garland and A. Mills2.  
Researchers found that by inoculating Biolog GN MicroPlates 
with a mixed culture of microorganisms and measuring the 
community fingerprint over time, they could ascertain 
characteristics about that community of microbes.  This  
approach, called community–level physiological profiling, has 
been demonstrated to be effective at distinguishing spatial and  
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FIGURE 1. Carbon Sources in EcoPlate 

temporal changes in microbial communities.  In applied 
ecological research, the MicroPlates are used as both an assay 
of the stability of a normal population and to detect and assess  
changes following the onset of an environmental variable. 
 
Studies have been done in diverse applications of microbial 
ecology and have demonstrated the fundamental utility of 
Biolog MicroPlates in detecting population changes in soil, 
water, wastewater, activated sludge, compost, and industrial 
waste.  The utility of the information has been documented in 
over 500 publications using Biolog technology to analyze 
microbial communities.  A bibliography of publications is 
posted on the Biolog website at 
www.biolog.com/mID_section_4.html. 
 
 

ECOPLATE 
 

The Biolog EcoPlate contains 31 of the most useful carbon 
sources for soil community analysis.  These 31 carbon sources 
are repeated 3 times to give the scientist more replicates of the 
data.   Communities of organisms will give a characteristic 
reaction pattern called a metabolic fingerprint.  These 
fingerprint reaction patterns rapidly and easily provide a vast 
amount of information from a single Biolog MicroPlate. 
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  Indirect	
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a.	
  biomolecule	
  isotopic	
  signatures	
  

Ingalls	
  et	
  al	
  2006	
  

Euryarchaeota. However, this bias toward the contribution of
Group I Crenarchaeota in the surface sample also makes the
comparison between surface and deep samples relevant in the
algebraic model discussed below. The deep sample is expected to
contain nearly exclusively the lipids of Group I organisms, reflect-
ing the dominance of this population in deeper waters (1, 3–6, 11).

There are at least three possible sources of GDGTs that could
contribute to the total archaeal lipids found at 670 m: (i) GDGTs
that are produced at the surface, either autotrophically or hetero-
trophically, which subsequently sink in association with the sinking
fraction of POC, (ii) in situ autotrophic production in the deep
water column, and!or (iii) in situ heterotrophic production in the
deep water column.

Because the average !14C value of GDGTs at 670 m is "77‰,
all of these options can be eliminated as the sole source of GDGTs
at this depth. Exclusive production of GDGTs by autotrophy at
670 m would yield !14CGDGT # "151‰, more negative than all of
the observed values (Fig. 2). The !14C values at depth also are not
positive enough to derive solely from OC exported from surface
waters. The !14C value of sinking POC, which releases organic
matter that can be used by microbial heterotrophs, is assumed to be
equal to the $71‰ value of surface DIC. In 1987, when there was
more bomb-14C in surface DIC than there is presently, sinking POC
collected in nearby sediment traps at 4,800 m and suspended POC
at 900 m both had !14C values of approximately $100‰ (24). A
decadal residence time for GDGTs within the suspended or sinking
POC pools would bias surface-derived GDGTs to more positive
!14C values. Therefore, the !14C data suggest the true residence
time is much shorter: the surface-derived GDGT I-fraction and
GDGT II-fraction both are within 1! of the present !14CDIC value;
and surface-derived material cannot be the sole source of the deep
GDGTs.

The !14C value of GDGT I provides further evidence that
heterotrophic consumption of carbon derived from sinking POC
does not contribute a large fraction of the in situ archaeal produc-
tion at 670 m. This compound shows the largest increase in relative
abundance in the deep sample (Fig. 1), indicating the greatest
fractional contribution from in situ production at depth, and it has
the most negative 14C-signature. Additionally, because there is no
evidence for differential degradation of individual GDGT isomers
in oxic sediments (25), presumably this finding also is true in the
water column. It suggests the relative compositions and isotopic
ratios of these samples would not be affected by degradation taking
place in the water column. The GDGTs at 670 m are isotopically
and compositionally different from the surface component.

To determine the maximum fraction of the total GDGTs in the
deep sample that could be derived from material sinking directly

from surface waters, a two end-member mixing model was created.
The assumptions were as follows: (i) that GDGTs exported from
the surface reach 670 m with the same relative abundance and !14C
values as were produced in the surface, and (ii) that all six of the
GDGTs produced by archaea in situ at 670 m reflect utilization of
the same source of carbon (or the same proportional mixture of
multiple sources) having an isotopic value called !14CD. This value
is determined by the model and is not assumed to equal a purely
autotrophic value of "151‰. Because incorporation of both
isotopically labeled DIC and leucine has been reported for the deep
water column (11), we cannot assume a purely autotrophic com-
munity metabolism at 670 m. The model also assumes (iii) that none
of the individual GDGTs is produced disproportionately by a subset
of the archaea that may be expressing a metabolism vastly different

Fig. 2. Water column properties and !14C values for DIC, DOC, sterols, and
GDGTs. Chlorophyll, temperature, and dissolved oxygen data are from the
Hawaii Ocean Time Series (HOTS) public data collected on May 19, 2004. DOC
and DIC !14C data are from refs. 24 and 46. Data points for individual
compounds at 670 m have been separated for clarity.

Table 2. Input for the algebraic model, including relative abundance and isotopic data

Variable Data source
Modeled

parameter I III IV V II VI Sum

XSi Meas. 0.08 0.08 0.11 0.06 0.64 0.02 1.0
XDi Calc. 0.33 0.13 0.18 0.00 0.31 0.06 1.0
XTi Meas. 0.29 0.12 0.17 0.01 0.36 0.05 1.0
fs Variable 0.14
XSifS Calc. 0.01 0.02 0.02 0.01 0.09 0.00 0.14
XDi (1 " fS) Calc. 0.28 0.11 0.15 0.00 0.27 0.05 0.86
!D Variable !112
!Si Meas. 77 77 77 n.a. 84 n.a.
!Ti Meas. "110 "60 "64 or "96 n.a. "64 n.a.
!Ti Model result "104 "94 "95 n.a. "63 n.a.
Difference* 6 34 31 or 1 n.a. 1 n.a.
AMS 1! meas. error

for !Ti

11 54 41 or 32 n.a. 13 n.a.

The variables fS and !D were optimized by iteration. For graphical results of the optimization, see Fig. 5. Values of ! and errors are
in ‰ units. Meas., measurements; Calc., calculated; n.a., not available. Bold indicates model results.
*Difference # "model " measurements".

6444 " www.pnas.org!cgi!doi!10.1073!pnas.0510157103 Ingalls et al.

composition of freshly produced biomass and to check for mea-
surement biases in our compound-specific analyses. The lower value
(!56 " 9‰) suggests there could be a small amount of older
carbon (coeluting, nonsteroidal material) in this sample, because
this value is #1! but $2! different from the %14C value for DIC;
but overall these control samples are consistent with insignificant
analytical bias.

The six different GDGTs typically detected in marine water
columns and sediments (12–16) were found in the surface (21 m)
and deep (670 m) water samples (Fig. 1; see also Figs. 3 and 4, which
are published as supporting information on the PNAS web site).
The most significant differences between the two depths are the
relative abundances of uncyclized GDGT I and the pentacyclic

marine archaeal compound, crenarchaeol (GDGT II). In the
surface, GDGT I accounts for 8% and GDGT II for 64% of total
archaeal lipids, but in deep water, they are 29% and 36% of the
total, respectively (Table 2). In addition, GDGT VI represents an
insignificant proportion of the total archaeal lipids in the surface
(2%), whereas the least abundant lipid in the deep sample is GDGT
V (1%). Two fractions of GDGTs were collected from the surface
sample (Figs. 1 and 3); compounds I, III, IV, and V were combined
to obtain sufficient carbon for 14C-accelerator mass spectrometry
(AMS) analysis (%14C & !77‰). Likewise, compounds II and VI
were collected together as a second fraction (%14C & !84‰). The
abundance-weighted average %14C value for the surface GDGTs is
!82‰. The difference between the %14C value of surface DIC
(!71‰) and the GDGTs is less than the measurement error for
the GDGTs.

Five fractions of GDGTs were collected from the deep sample
(Figs. 1 and 4). Values of %14C for individual GDGTs in the deep
sample ranged from '127‰ to '60‰ (Table 1). When replicate
%14C measurements were available for the same compound, the
sample having a larger mass consistently has a more precise
measurement than the sample having smaller mass. Therefore, only
the values from the larger samples are used for the following
analysis and discussion. The abundance-weighted average %14C
value of the deep archaeal lipids was '77‰. This average was
calculated from 94% of total GDGTs from this depth, because
insufficient mass of sample was obtained from GDGTs V and VI
to measure accurate %14C values. Both GDGTs V and VI are
excluded from further discussion.

Discussion
The values of %14C for surface (21 m) archaeal lipids unambiguously
reflect production of biomass from DIC or from freshly produced
dissolved OC (DOC; solubilized from fresh POC and used by
microbes). In surface waters, it is not possible to distinguish
heterotrophy from autotrophy, because the %14C values of the DIC
and fresh organic substrates are identical. However, the data do
confirm a short residence time and an in situ biosynthetic source for
GDGTs obtained from the upper water column. The data also
confirm that the GDGTs present in surface waters cannot derive
from relict microbial populations or from free lipids entrained
during occasional deep mixing events. It is difficult to assess the
relative contributions of Group I and II marine archaea to the total
surface GDGTs. Because many Euryarchaeota produce diether
lipids instead of tetraether lipids, the surface GDGT samples
probably underrepresent the contribution of marine Group II

Table 1. Water temperature, values of !14C, sizes of samples,
and AMS facility sample numbers

Depth, m;
temp., °C Sample

%14C,*
‰

Total
error,

‰

Sample
size,
"g!C

Facility
sample
nos.†

21; 24.5–27.5 DIC 71 3 OS-46826
Eukaryotic sterols

C27 mixed sterols 56 9 43 115347
C29 mixed sterols 69 9 48 115348

Archaeal GDGTs
I, III, IV, and V 77 13 26 17027
II and VI 84 12 28 17029

670; 6 DIC '151 3 OS-46825
Archael GDGTs

I '68 65 5.4 16873
'110 11 30 17022

II '72 32 9.6 17023
'64 13 24 17026

III '60 54 6.1 16878
IV '127 41 7.6 16883

'64 32 9.8 17031
V n.a. n.a. n.a. n.a.
VI 98 257 2.8 16861

Italics symbolize samples excluded from the algebraic model. n.a., not
available.
*%14C values after correction for combustion blanks and sample processing
blanks as described in Supporting Text.

†AMS facility nos. all refer to University of California, Irvine, except for those
beginning with ‘‘OS,’’ which are for National Ocean Sciences Accelerator
Mass Spectrometry, and 115347–115348, which are from Lawrence Livermore
National Laboratory.

Fig. 1. HPLC!atmospheric pressure chem-
ical ionization-MS total ion current chro-
matograms of GDGTs separated from the
surface filter (21 m) (A) and deep filter (670
m) (B) and molecular structures of the
GDGT lipids. GDGT VI is a regioisomer of
GDGT II (45).

Ingalls et al. PNAS " April 25, 2006 " vol. 103 " no. 17 " 6443
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1)  Indirect	
  molecular	
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  a.	
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  c.	
  transcripPonal	
  and	
  translaPonal	
  acPvity	
  (of	
  known	
  funcPonal	
  genes)	
  

2) direct	
  molecular	
  inference:	
  
	
   	
  a.	
  SIP	
  

3)	
  	
  	
  direct	
  physiological	
  measurement:	
  
	
   	
  a.	
  culture	
  based	
  charactrizaPon	
  
	
   	
  b.	
  Ecolog	
  plate	
  substrate	
  uPlizaPon	
  
	
   	
  c.	
  enzyme	
  assays	
  

4)  indirect	
  physiologial	
  measurement:	
  
	
   	
  a.	
  biomolecule	
  isotopic	
  signatures	
  
	
   	
  b.	
  emi"ed	
  product	
  isotopic	
  signatures	
  

5)	
  	
  	
  modeled	
  linkages	
  	
  -­‐	
  Moira	
  Hough	
  will	
  tell	
  us	
  about	
  this	
  

A	
  way	
  I	
  think	
  about	
  some	
  of	
  the	
  methods	
  
involved	
  in	
  connecPng	
  them:	
  


