
Methylamine-‐enriched	  community	  of	  Lake	  Washington	  sediment	  featuring	  
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1)  Indirect	  molecular	  inference:	  
	  a.	  16S	  -‐>	  funcPonal	  guilds	  
	  b.	  gene	  ecology	  (of	  known	  funcPonal	  genes)	  
	  c.	  transcripPonal	  and	  translaPonal	  acPvity	  (of	  known	  funcPonal	  genes)	  

2) direct	  molecular	  inference:	  
	   	  a.	  SIP	  

3)	  	  	  direct	  physiological	  measurement:	  
	   	  a.	  culture	  based	  charactrizaPon	  
	   	  b.	  Ecolog	  plate	  substrate	  uPlizaPon	  
	   	  c.	  enzyme	  assays	  

4)  indirect	  physiologial	  measurement:	  
	   	  a.	  biomolecule	  isotopic	  signatures	  
	   	  b.	  emi"ed	  product	  isotopic	  signatures	  

5)	  	  	  modeled	  linkages	  	  -‐	  Moira	  Hough	  will	  tell	  us	  about	  this	  

A	  way	  I	  think	  about	  some	  of	  the	  methods	  
involved	  in	  connecPng	  them:	  



Figure	  1	  in	  Bodelier	  2011	  (opPonal	  
reading	  on	  D2L):	  “…important	  elements	  
in	  elucidaPng	  the	  role	  of	  microbial	  
diversity	  in	  ecosystem	  funcPoning.	  	  

“Crucial	  element	  is	  the	  applica1on	  of	  a	  
Func1onal	  Biodiversity	  concept	  to	  link	  
microbial	  diversity	  to	  ecosystem	  
func1oning.	  This	  approach	  will	  facilitate	  
predic1ve	  ecosystem	  modeling	  and	  will	  be	  
fostered	  by	  omics	  techniques.	  However,	  to	  
make	  this	  conceptual	  step	  the	  mechanis1c	  
insight	  into	  what	  is	  going	  on	  in	  the	  “black	  
box”	  being	  the	  structure	  and	  func1oning	  of	  
microbial	  communi1es	  and	  underlying	  
popula1ons	  and	  cells,	  needs	  to	  be	  
elucidated.	  ApplicaPon	  of	  ecological	  theory,	  
conceptual	  experimental	  design,	  novel	  
methodology,	  and	  mathemaPcal	  modeling	  
will	  be	  the	  key	  to	  gain	  access	  to	  the	  
knowledge	  in	  the	  “Black	  box.”	  

Paul	  
Bodelier’s	  
way:	  



“ 	  …five	  [four]	  stages	  of	  environmental	  
microbiological	  inquiry	  leading	  to	  advances	  in	  
biogeochemistry:	  

•	  Stage	  1.	  Discovery	  of	  new	  microbiological	  process.	  Prove	  that	  
microorganisms	  are	  capable	  of	  catalyzing	  the	  process	  of	  interest.	  This	  is	  achieved	  via	  
laboratory	  incubaPon	  of	  environmental	  samples	  and/or	  via	  chemical	  or	  biomarker	  assays	  
performed	  on	  complex,	  uncharacterized	  microbial	  communiPes	  accompanied	  by	  
materials	  from	  soils,	  sediments,	  or	  waters.	  

•	  Stage	  2.	  ValidaPon	  of	  the	  discovery	  by	  finding	  representaPve	  
microbiological	  agents.	  Refine	  the	  test	  system	  by	  isolaPng	  a	  single	  microorganism	  
capable	  of	  catalyzing	  the	  process	  or	  obtaining	  a	  simplified,	  highly	  enriched	  consorPum	  of	  
microbial	  populaPons	  exhibiPng	  the	  process	  or	  via	  a	  convincing	  combinaPon	  of	  
biomarkers	  and	  physiological	  evidence.”	  

Eugene	  	  Madsen’s	  way:	  
From	  Madsen	  2011	  (opPonal	  reading	  on	  D2L)	  



•	  Stage	  3.	  CharacterizaPon	  of	  agents	  and	  the	  physiological,	  
biochemical,	  and/or	  genomic	  mechanisms	  of	  the	  biogeochemical	  
process(es)	  they	  catalyze.	  Use	  of	  controlled	  laboratory	  incubaPons,	  chemical	  
assays,	  isotopic	  tracers,	  biomarkers,…	  bioinformaPcs	  to	  define	  metabolites,	  metabolic	  
pathways,	  enzymaPc	  reacPons,	  and	  the	  genePc	  basis	  of	  cellular	  processes.	  

•	  Stage	  4.	  Field	  verificaPon	  of	  ecological	  
relevance	  of	  agents	  and/or	  their	  
biogeochemical	  impact.	  Apply	  the	  tools,	  insights,	  
biomarker	  analyses	  from	  Stage	  3	  to	  real-‐world	  field	  sites	  
where	  microbiological	  agents	  (specific	  taxa	  and/or	  their	  
funcPonal	  genes)	  are	  influencing	  ecological	  condiPons.	  

•	  Stage	  5.	  Biotechnological	  innovaPon	  and/or	  improved	  site	  
management	  based	  on	  understanding	  biogeochemical	  process	  
mechanisms.	  In	  some	  instances	  microbial-‐mediated	  processes	  can	  be	  transplanted	  
from	  their	  ecosystem	  contexts	  to	  human-‐engineered	  sejngs	  for	  commercial	  or	  industrial	  
applicaPons.	  



Five	  key	  approaches	  in	  environmental	  microbiology	  “tool	  box”	  
	  
Site	  geochemistry: 	  AnalyPcal	  chemistry	  proves	  presence	  of	  compounds	  indicaPve	  of	  microbial	  
process	  (reinforced	  by	  flux	  data	  and	  isotopic	  fracPonaPon	  pa"erns).	  
	  
Cul1va1on: 	  Provision	  of	  appropriate	  nutrients	  in	  liquid	  or	  solid	  media	  allows	  isolaPon	  of	  
microorganisms	  catalyzing	  process	  of	  interest	  (e.g.	  denitrificaPon	  or	  benzene	  biodegradaPon).	  
	  
Incuba1ons: 	  Placing	  environmental	  samples	  or	  pure	  cultures	  in	  sealed,	  laboratory	  vessels	  
allows	  documentaPon	  of	  physiological	  changes	  (e.g.	  methane	  generaPon	  or	  consumpPon)	  effected	  
by	  microorganisms.	  
	  
Biomarkers: 	  ExtracPon	  and	  analysis	  of	  key	  cellular	  consPtuents.	  These	  provide	  insights	  into	  the	  
taxonomic	  composiPon	  and/or	  funcPonal	  potenPal	  of	  microorganisms	  by	  focusing	  upon	  
phospholipid	  fa"y	  acids,	  DNA,	  ribosomal	  RNA,	  messenger	  RNA,	  or	  proteins	  followed	  by	  GC/MS,	  LC/
MS	  and/or	  various	  molecular	  biology	  procedures	  ranging	  from	  small-‐scale	  sequencing	  to	  high-‐
throughput	  meta-‐genomics,	  meta-‐transcriptomics,	  and	  meta-‐proteomics.	  
	  
Microscopy: 	  Allows	  images	  of	  microorganisms	  and	  cell	  associaPons	  to	  be	  obtained	  from	  site	  
samples	  or	  laboratory	  incubaPons.	  Depending	  upon	  analyPcal	  approach	  and	  staining	  targets,	  
informaPon	  yielded	  includes	  enumeraPon,	  idenPty	  (e.g.	  via	  small	  subunit	  rRNA	  FISH	  probes),	  
localizaPon	  of	  biomarkers	  within	  cells,	  and	  cell-‐specific	  substrate	  incorporaPon	  (e.g.	  via	  secondary	  
ion	  mass	  spectrometry).	  

Eugene	  Madsen’s	  take	  on	  env.	  microbiologist	  toolbox	  

Box	  1	  From	  Madsen	  2011	  (opPonal	  reading	  on	  D2L)	  



a.	  16S	  -‐>	  func1onal	  guilds	  

1.	  Indirect	  molecular	  inference	  

Wikipedia	  defines	  ecological	  guilds	  as:	  
	  -‐	  	  “any	  group	  of	  species	  that	  exploit	  the	  same	  resources,	  omen	  in	  related	  ways”	  
	  -‐	  they	  may	  or	  may	  not	  occupy	  the	  similar	  niches	  	  
	  -‐	  “defined	  by	  locaPons,	  a"ributes,	  and	  acPviPes	  of	  component	  species;	  e.g.	  mode	  

of	  acquiring	  nutrients,	  mobility,	  and	  habitat	  zones”	  
	  -‐	  “does	  not	  typically	  have	  strict,	  or	  even	  clearly	  defined	  boundaries.	  A	  broadly-‐

defined	  guild	  will	  pracPcally	  always	  have	  consPtuent	  guilds;	  for	  example,	  grazing	  guilds	  
will	  have	  some	  species	  that	  concentrate	  on	  coarse,	  plenPful	  forage,	  while	  others	  
concentrate	  on	  low-‐growing,	  finer	  plants.”	  

 319"
Fig. 1 (A) Average daily CH4 emissions, (B) δ13C composition of emitted CH4, and (C) relative 320"
abundance of methanogenic groups as inferred by taxonomic identity assigned from 16S rRNA 321"
amplicon sequencing, for a permafrost thaw sequence at Stordalen Mire. 322"
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PCR	  +	  sequencing	  +	  BLAST	  	  



1.	  Indirect	  molecular	  inference	  
b.	  gene	  ecology	  (of	  known	  func1onal	  genes)	  

Have	  to	  back	  up	  a	  sec.	  to	  recap	  Metagenomics	  

MICROBES	  

High	  throughput	  	  
Sequencing…	  



SEQUENCES	  
	  

ASSEMBLY	  



Metagenome	  assembly	  



Metagenome	  assembly	  



Metagenome	  assembly	  



SEQUENCES	  
	  

ASSEMBLY	  



AnnotaPon	  is	  no	  small	  feat	  

There	  are	  many	  
many	  many	  many	  

reference	  	  databases	  

One	  small	  example	  from	  JCVI:	  

•  What	  is	  IN	  those	  databases	  is	  not	  a	  
random	  broad	  swath	  of	  what’s	  in	  
nature…	  

•  The	  annotaPon	  accuracy	  is	  inconsistent	  
•  How	  similar	  does	  something	  have	  to	  be	  

to	  infer	  similar	  funcPon?	  
•  Higher-‐level	  funcPonal	  organizaPon	  is	  

spo"y	  



5. J. H. Lee et al., Mol. Cancer Res. 1, 674 (2003).
6. R. Kitagawa, C. J. Bakkenist, P. J. McKinnon, M. B. Kastan,

Genes Dev. 18, 1423 (2004).
7. P. T. Yazdi et al., Genes Dev. 16, 571 (2002).
8. J. H. Lee, T. T. Paull, Science 304, 93 (2004).
9. C. J. Bakkenist, M. B. Kastan, Nature 421, 499 (2003).

10. Materials and methods are available as supporting
material on Science Online.

11. J. H. Lee, T. T. Paull, data not shown.
12. T. T. Paull, M. Gellert, Mol. Cell 1, 969 (1998).
13. J.-H. Lee et al., J. Biol. Chem. 278, 45171 (2003).
14. T. T. Paull, M. Gellert, Genes Dev. 13, 1276 (1999).
15. G. Moncalian et al., J. Mol. Biol. 335, 937 (2004).
16. R. Shroff et al., Curr. Biol. 14, 1703 (2004).

17. M. Lisby, J. H. Barlow, R. C. Burgess, R. Rothstein, Cell
118, 699 (2004).

18. D. Nakada, K. Matsumoto, K. Sugimoto, Genes Dev.
17, 1957 (2003).

19. A. Ali et al., Genes Dev. 18, 249 (2004).
20. A. A. Goodarzi et al., EMBO J. 23, 4451 (2004).
21. Molecular interaction data have been deposited in the

Biomolecular Interaction Network Database (BIND)
with accession codes 216020 to 216045. We thank
M. Kastan and R. Abraham for expression constructs;
D. Ramsden, M. Gellert, and M. O’Dea for Rag1/Rag2
protein; S. Stevens for technical advice; members of
the Paull lab for their help; and R. Rothstein for a
helpful word. This work was supported by NIH (grant

CA094008) and by the American Cancer Society (grant
RSG-04-173-01-CCG).

Supporting Online Material
www.sciencemag.org/cgi/content/full/1108297/DC1
Materials and Methods
Figs. S1 and S2
References

6 December 2004; accepted 24 February 2005
Published online 24 March 2005;
10.1126/science.1108297
Include this information when citing this paper.

Comparative Metagenomics of
Microbial Communities

Susannah Green Tringe,1,2* Christian von Mering,3*
Arthur Kobayashi,1 Asaf A. Salamov,1 Kevin Chen,4

Hwai W. Chang,5 Mircea Podar,5 Jay M. Short,5 Eric J. Mathur,5

John C. Detter,1 Peer Bork,3 Philip Hugenholtz,1

Edward M. Rubin1,2.

The species complexity of microbial communities and challenges in culturing
representative isolates make it difficult to obtain assembled genomes. Here
we characterize and compare the metabolic capabilities of terrestrial and
marine microbial communities using largely unassembled sequence data
obtained by shotgun sequencing DNA isolated from the various environ-
ments. Quantitative gene content analysis reveals habitat-specific finger-
prints that reflect known characteristics of the sampled environments. The
identification of environment-specific genes through a gene-centric compar-
ative analysis presents new opportunities for interpreting and diagnosing
environments.

Despite their ubiquity, relatively little is known
about the majority of environmental micro-
organisms, largely because of their resistance to
culture under standard laboratory conditions. A
variety of environmental sequencing projects
targeted at 16S ribosomal RNA (rRNA) (1, 2)
has offered a glimpse into the phylogenetic
diversity of uncultured organisms. The direct
sequencing of environmental samples has

provided further valuable insight into the life-
styles and metabolic capabilities of uncultured
organisms occupying various environmental
niches. The latter efforts include the sequenc-
ing of individual large-insert bacterial artifi-
cial chromosome (BAC) clones as well as
small-insert libraries made directly from envi-
ronmental DNA (3–7). The application of
high-throughput shotgun sequencing environ-
mental samples has recently provided global

views of those communities not obtainable
from 16S rRNA or BAC clone–sequencing
surveys (6, 7). The sequence data have also
posed challenges to genome assembly,
which suggests that complex communities
will demand enormous sequencing expend-
iture for the assembly of even the most
predominant members (7).

A practical question emerging from envi-
ronmental sequencing projects is the extent to
which the data are interpretable in the absence
of significant individual genome assemblies.
Most microbial communities are extremely
complex and thus not amenable to genome
assembly (8). This obstacle may in part be
offset by the high gene density of prokaryotes
EÈ1 open reading frame per 1000 base pairs
(bp)^ and currently attainable read lengths (700
to 750 bp), which result in most individual
sequences containing a significant portion of at

Fig. 1. Species complexity. Rarefaction curves
of bacterial 16S rRNA clone sequences for soil
and whale fall samples. (Inset) Rarefaction
curve for all 1700 soil clones. The three whale
falls are: 1, Santa Cruz Basin bone; 2, Santa Cruz
Basin microbial mat; and 3, Antarctic bone.

Fig. 2. Identification of
orthologous groups
with greater sequencing
depth. The number of
orthologous groups ob-
served at least once is
shown as a function of
the raw sequence gen-
erated. Numbers in
parentheses indicate
lower limits of the total
number of groups in the
sample.
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Fig. S6.  Two-way clustering of data based on (A) COGs and (B) operons. 
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1.	  Indirect	  molecular	  inference	  
c.	  transcrip1onal	  and	  transla1onal	  ac1vity	  (of	  known	  func1onal	  
genes)	  

microbial	  communi,es	  

bacteria	  &	  archaea	  viruses	   eukaryotes	  

transcriptome	   transcriptome	  transcriptome	  

genome	   genome	  genome	  DNA	  

RNA	  

proteome	   proteome	  proteome	  protein	  

Metagenomics	  is	  just	  the	  first	  level	  
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An	  example	  from	  the	  site	  of	  McCalley	  et	  al	  	  

The	  proteome	  of	  the	  methanogens	  present	  

(=	  ~98%	  methane	  
metabolism)	  



• Purpose:	  to	  idenPfy	  the	  organisms	  responsible	  for	  a	  given	  chemical	  
transformaPon	  

• Method	  principle:	  if	  you	  incubate	  a	  “wild”	  community	  with	  a	  stable	  
isotope-‐enriched	  substrate,	  the	  organisms	  that	  transform	  that	  
substrate	  will	  become	  labeled	  by	  the	  stable	  isotope.	  You	  can	  then	  
separate	  the	  labeled	  biomolecules	  of	  those	  organisms	  from	  the	  rest	  of	  
the	  community.	  These	  biomolecules	  can	  inform	  you	  about	  the	  idenPty	  
and	  genePc	  content	  of	  the	  chemically	  acPve	  organisms.	  	  

2.	  Direct	  molecular	  inference	  
a.	  Stable	  isotope	  probing	  (“SIP”)	  



2005	  in	  NRMicro	  

Substrate	  eg:	  13CH4	  
IncubaPon	  Pme	  eg:	  16	  
days	  	  



2005	  in	  NRMicro	  

Metagenomics	  
without	  cloning	  



• Purpose:	  to	  idenPfy	  the	  organisms	  responsible	  for	  a	  given	  chemical	  
transformaPon	  

• Method	  principle:	  if	  you	  incubate	  a	  “wild”	  community	  with	  a	  stable	  
isotope-‐enriched	  substrate,	  the	  organisms	  that	  transform	  that	  
substrate	  will	  become	  labeled	  by	  the	  stable	  isotope.	  You	  can	  then	  
separate	  the	  labeled	  biomolecules	  of	  those	  organisms	  from	  the	  rest	  of	  
the	  community.	  These	  biomolecules	  can	  inform	  you	  about	  the	  idenPty	  
and	  genePc	  content	  of	  the	  chemically	  acPve	  organisms.	  	  

• Caveats:	  (a)	  incubaPon	  Pme	  is	  a	  bugaboo	  –	  cross-‐feeding	  of	  
biomolecules	  can	  muddy	  the	  signal	  over	  Pme.	  How	  long	  depends	  on	  
the	  organisms,	  their	  growth	  rates,	  and	  their	  trophic	  interacPons.	  (b)	  
some	  reacPons	  are	  catalyzed	  without	  incorporaPon	  of	  the	  labeled	  	  
atom	  (e.g.	  by	  exoenzymes).	  (c)	  orgs	  that	  feed	  on	  a	  diversity	  of	  
substrates	  may	  not	  be	  sufficiently	  labeled	  (d)	  important	  to	  use	  ambient	  
concentraPons	  of	  substrate	  or	  you’re	  doing	  an	  enrichment…	  

a.	  Stable	  isotope	  probing	  (“SIP”)	  

2.	  Direct	  molecular	  inference	  





1)  Indirect	  molecular	  inference:	  
	  a.	  16S	  -‐>	  funcPonal	  guilds	  
	  b.	  gene	  ecology	  (of	  known	  funcPonal	  genes)	  
	  c.	  transcripPonal	  and	  translaPonal	  acPvity	  (of	  known	  funcPonal	  genes)	  

2) direct	  molecular	  inference:	  
	   	  a.	  SIP	  

3)	  	  	  direct	  physiological	  measurement:	  
	   	  a.	  culture	  based	  charactrizaPon	  
	   	  b.	  Ecolog	  plate	  substrate	  uPlizaPon	  
	   	  c.	  enzyme	  assays	  

4)  indirect	  physiologial	  measurement:	  
	   	  a.	  biomolecule	  isotopic	  signatures	  
	   	  b.	  emi"ed	  product	  isotopic	  signatures	  

5)	  	  	  modeled	  linkages	  	  -‐	  Moira	  Hough	  will	  tell	  us	  about	  this	  

A	  way	  I	  think	  about	  some	  of	  the	  methods	  
involved	  in	  connecPng	  them:	  



3.	  Direct	  physiological	  measurement	  
a.	  culture-‐based	  characteriza1on	  

composite of several types, according to aspects
of their physiology: (i) diatom analogs—large
phytoplankton that require silica, (ii) other large
eukaryotes, (iii) Prochlorococcus analogs—small
phytoplankton that cannot assimilate nitrate, and
(iv) other small photo-autotrophs. The large-scale
biogeography of the emergent phytoplankton
community was plausible with respect to obser-
vations (Fig. 1B) and consistent among the 10
ensemble members. The model successfully cap-
tured the domination of annual biomass by large
phytoplankton in subpolar upwelling regions,
where both light and macronutrients are season-
ally plentiful. The subtropical oceans were domi-
nated by small phytoplankton functional types
(14). Large areas of the tropics and subtropics
were dominated by several Prochlorococcus
analogs (Fig. 1C), also in accord with observa-
tions (15, 16). Along the cruise track of At-
lantic Meridional Transect 13 (AMT13), total
Prochlorococcus abundance (the sum of all

Prochlorococcus analogs) qualitatively and quan-
titatively reflected the major features of the ob-
served distribution with highest abundances in
the most oligotrophic (nutrient-depleted) waters
(15, 17) (Fig. 2, A to D).

Real-world Prochlorococcus exhibit genetic
diversity, which leads to differences in light and
temperature sensitivities (17–20), as well as ni-
trogen assimilation abilities (21). The strains, or
ecotypes, of Prochlorococcus exhibit distinct pat-
terns of abundance along ocean gradients (15, 17),
and observations on AMT13 (17) (Fig. 2, E, G,
I, and K) provide an ideal test for the stochastic
modeling strategy: Do the emergent model ana-
logs of Prochlorococcus reflect the geographic
distributions, relative abundances, and physio-
logical properties of their real-world counterparts?

Of the Prochlorococcus analogs initialized in
each model solution, between three and six var-
iants persisted with significant abundances (fig.
S4). We grouped the analogs by defining three

“model ecotypes” based only on distinct geo-
graphic habitats, without regard to physiology,
which had a qualitative resemblance to the ob-
served distributions of ecotypes along AMT13.
In any ensemble member, more than one emer-
gent Prochlorococcus analog may fall into a
particular model-ecotype classification, and some
were ambiguous. Model ecotype m-e1 (Fig. 2F)
was defined to include emergent analogs with
significant biomass in the upper 25 m along the
transect between 15°N and 15°S, qualitatively
corresponding to the habitat of real-world eco-
type eMIT9312 (Fig. 2E). Model ecotype m-e2
(Fig. 2H) included analogs that had significant
biomass in surface waters polewards of 15o but
low biomass within 15o of the equator, broadly
reflecting eMED4 (Fig. 2G). Finally, model eco-
type m-e3 (Fig. 2J) was defined to include ana-
logs that had a subsurface maximum biomass, in
common with eMIT9313 and eNATL2A (Fig. 2,
I and K). The observed widespread distribution
of deep maxima with low abundance associated
with eMIT9313 and eNATL2A was not clearly
reflected in the model analogs. This might be
explained by the tendency toward unrealistically
complete competitive exclusion typical in eco-
system models (22, 23), precluding persistent
populations at low abundance. There is a deep,
high biomass layer in the model made up of
other, nitrate-consuming, small phytoplankton.
This may partially reflect a contribution from
nitrate-utilizing Prochlorococcus, which have re-
cently been inferred from ocean observations (24),
but which have not yet been seen in culture.

Fig. 2. Observed and modeled properties along the AMT13 cruise track. Left column shows
observations (17), right column shows results from a single model integration. (A and B) Nitrate
(mmol kg−1); (C and D) total Prochlorococcus abundance [log (cells ml−1)]. (E, G, I, and K)
Distributions of the four most abundant Prochlorococcus ecotypes [log (cells ml−1)] ranked
vertically. (F, H, and J) The three emergent model ecotypes ranked vertically by abundance. Model
Prochlorococcus biomass was converted to cell density assuming a quota of 1 fg P cell−1 (27). Black
lines indicate isotherms.

Fig. 3. Optimum temperature and light inten-
sity for growth, Topt and Iopt, of all initialized
Prochlorococcus analogs (all circles) from the
ensemble of 10 model integrations. Large
circles indicate the analogs that exceeded a
total biomass of 106 mol P along AMT13 in the
10th year. Colors indicate classification into
model ecotypes (see main text): Red circles, m-e1;
blue circles, m-e2; green circles, m-e3. Mixed-
color and solid black circles denote ambiguity in
model-ecotype classification. Bold diamonds indi-
cate real-world Prochlorococcus ecotypes (red,
eMIT9312; blue, eMED4; green, eNATL2A; and
yellow, eMIT9313).
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Follows	  et	  al	  2007	  
Prochlorococcus!	  

proteorhodopsin	  

vs.	  

Beja	  et	  al	  2000	  

E.	  coli	  +/-‐	  the	  cloned	  gene	  



3.	  Direct	  physiological	  measurement	  
b.	  Ecolog	  plate	  substrate	  u1liza1on	  

                                                Microbial Community Analysis 

 

 
EcoPlate™

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
INTRODUCTION 
 

Microbial communities provide useful information about 
environmental change.  Microorganisms are present in 
virtually all environments and are typically the first organisms 
to react to chemical and physical changes in the environment.  
Because they are near the bottom of the food chain, changes in 
microbial communities are often a precursor to changes in the 
health and viability of the environment as a whole. 
 
The Biolog EcoPlate™ (Figure 1) was created specifically for 
community analysis and microbial ecological studies.  It was 
originally designed at the request of a group of microbial 
ecologists that had been using the Biolog GN MicroPlate�, 
but wanted a panel that provided replicate sets of tests1.   
 
Community analysis using the Biolog MicroPlates was 
originally described in 1991 by J. Garland and A. Mills2.  
Researchers found that by inoculating Biolog GN MicroPlates 
with a mixed culture of microorganisms and measuring the 
community fingerprint over time, they could ascertain 
characteristics about that community of microbes.  This  
approach, called community–level physiological profiling, has 
been demonstrated to be effective at distinguishing spatial and  
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FIGURE 1. Carbon Sources in EcoPlate 

temporal changes in microbial communities.  In applied 
ecological research, the MicroPlates are used as both an assay 
of the stability of a normal population and to detect and assess  
changes following the onset of an environmental variable. 
 
Studies have been done in diverse applications of microbial 
ecology and have demonstrated the fundamental utility of 
Biolog MicroPlates in detecting population changes in soil, 
water, wastewater, activated sludge, compost, and industrial 
waste.  The utility of the information has been documented in 
over 500 publications using Biolog technology to analyze 
microbial communities.  A bibliography of publications is 
posted on the Biolog website at 
www.biolog.com/mID_section_4.html. 
 
 

ECOPLATE 
 

The Biolog EcoPlate contains 31 of the most useful carbon 
sources for soil community analysis.  These 31 carbon sources 
are repeated 3 times to give the scientist more replicates of the 
data.   Communities of organisms will give a characteristic 
reaction pattern called a metabolic fingerprint.  These 
fingerprint reaction patterns rapidly and easily provide a vast 
amount of information from a single Biolog MicroPlate. 



3.	  Direct	  physiological	  measurement	  
c.	  enzyme	  assays	  

Colorimetric	  assay	  for	  cellulase	  ac1vity	  
on	  plant	  fungi	  

h"p://walkerlab.bee.cornell.edu/Enzymes.html	  



4.	  Indirect	  physiological	  measurement	  
a.	  biomolecule	  isotopic	  signatures	  

Ingalls	  et	  al	  2006	  

Euryarchaeota. However, this bias toward the contribution of
Group I Crenarchaeota in the surface sample also makes the
comparison between surface and deep samples relevant in the
algebraic model discussed below. The deep sample is expected to
contain nearly exclusively the lipids of Group I organisms, reflect-
ing the dominance of this population in deeper waters (1, 3–6, 11).

There are at least three possible sources of GDGTs that could
contribute to the total archaeal lipids found at 670 m: (i) GDGTs
that are produced at the surface, either autotrophically or hetero-
trophically, which subsequently sink in association with the sinking
fraction of POC, (ii) in situ autotrophic production in the deep
water column, and!or (iii) in situ heterotrophic production in the
deep water column.

Because the average !14C value of GDGTs at 670 m is "77‰,
all of these options can be eliminated as the sole source of GDGTs
at this depth. Exclusive production of GDGTs by autotrophy at
670 m would yield !14CGDGT # "151‰, more negative than all of
the observed values (Fig. 2). The !14C values at depth also are not
positive enough to derive solely from OC exported from surface
waters. The !14C value of sinking POC, which releases organic
matter that can be used by microbial heterotrophs, is assumed to be
equal to the $71‰ value of surface DIC. In 1987, when there was
more bomb-14C in surface DIC than there is presently, sinking POC
collected in nearby sediment traps at 4,800 m and suspended POC
at 900 m both had !14C values of approximately $100‰ (24). A
decadal residence time for GDGTs within the suspended or sinking
POC pools would bias surface-derived GDGTs to more positive
!14C values. Therefore, the !14C data suggest the true residence
time is much shorter: the surface-derived GDGT I-fraction and
GDGT II-fraction both are within 1! of the present !14CDIC value;
and surface-derived material cannot be the sole source of the deep
GDGTs.

The !14C value of GDGT I provides further evidence that
heterotrophic consumption of carbon derived from sinking POC
does not contribute a large fraction of the in situ archaeal produc-
tion at 670 m. This compound shows the largest increase in relative
abundance in the deep sample (Fig. 1), indicating the greatest
fractional contribution from in situ production at depth, and it has
the most negative 14C-signature. Additionally, because there is no
evidence for differential degradation of individual GDGT isomers
in oxic sediments (25), presumably this finding also is true in the
water column. It suggests the relative compositions and isotopic
ratios of these samples would not be affected by degradation taking
place in the water column. The GDGTs at 670 m are isotopically
and compositionally different from the surface component.

To determine the maximum fraction of the total GDGTs in the
deep sample that could be derived from material sinking directly

from surface waters, a two end-member mixing model was created.
The assumptions were as follows: (i) that GDGTs exported from
the surface reach 670 m with the same relative abundance and !14C
values as were produced in the surface, and (ii) that all six of the
GDGTs produced by archaea in situ at 670 m reflect utilization of
the same source of carbon (or the same proportional mixture of
multiple sources) having an isotopic value called !14CD. This value
is determined by the model and is not assumed to equal a purely
autotrophic value of "151‰. Because incorporation of both
isotopically labeled DIC and leucine has been reported for the deep
water column (11), we cannot assume a purely autotrophic com-
munity metabolism at 670 m. The model also assumes (iii) that none
of the individual GDGTs is produced disproportionately by a subset
of the archaea that may be expressing a metabolism vastly different

Fig. 2. Water column properties and !14C values for DIC, DOC, sterols, and
GDGTs. Chlorophyll, temperature, and dissolved oxygen data are from the
Hawaii Ocean Time Series (HOTS) public data collected on May 19, 2004. DOC
and DIC !14C data are from refs. 24 and 46. Data points for individual
compounds at 670 m have been separated for clarity.

Table 2. Input for the algebraic model, including relative abundance and isotopic data

Variable Data source
Modeled

parameter I III IV V II VI Sum

XSi Meas. 0.08 0.08 0.11 0.06 0.64 0.02 1.0
XDi Calc. 0.33 0.13 0.18 0.00 0.31 0.06 1.0
XTi Meas. 0.29 0.12 0.17 0.01 0.36 0.05 1.0
fs Variable 0.14
XSifS Calc. 0.01 0.02 0.02 0.01 0.09 0.00 0.14
XDi (1 " fS) Calc. 0.28 0.11 0.15 0.00 0.27 0.05 0.86
!D Variable !112
!Si Meas. 77 77 77 n.a. 84 n.a.
!Ti Meas. "110 "60 "64 or "96 n.a. "64 n.a.
!Ti Model result "104 "94 "95 n.a. "63 n.a.
Difference* 6 34 31 or 1 n.a. 1 n.a.
AMS 1! meas. error

for !Ti

11 54 41 or 32 n.a. 13 n.a.

The variables fS and !D were optimized by iteration. For graphical results of the optimization, see Fig. 5. Values of ! and errors are
in ‰ units. Meas., measurements; Calc., calculated; n.a., not available. Bold indicates model results.
*Difference # "model " measurements".

6444 " www.pnas.org!cgi!doi!10.1073!pnas.0510157103 Ingalls et al.

composition of freshly produced biomass and to check for mea-
surement biases in our compound-specific analyses. The lower value
(!56 " 9‰) suggests there could be a small amount of older
carbon (coeluting, nonsteroidal material) in this sample, because
this value is #1! but $2! different from the %14C value for DIC;
but overall these control samples are consistent with insignificant
analytical bias.

The six different GDGTs typically detected in marine water
columns and sediments (12–16) were found in the surface (21 m)
and deep (670 m) water samples (Fig. 1; see also Figs. 3 and 4, which
are published as supporting information on the PNAS web site).
The most significant differences between the two depths are the
relative abundances of uncyclized GDGT I and the pentacyclic

marine archaeal compound, crenarchaeol (GDGT II). In the
surface, GDGT I accounts for 8% and GDGT II for 64% of total
archaeal lipids, but in deep water, they are 29% and 36% of the
total, respectively (Table 2). In addition, GDGT VI represents an
insignificant proportion of the total archaeal lipids in the surface
(2%), whereas the least abundant lipid in the deep sample is GDGT
V (1%). Two fractions of GDGTs were collected from the surface
sample (Figs. 1 and 3); compounds I, III, IV, and V were combined
to obtain sufficient carbon for 14C-accelerator mass spectrometry
(AMS) analysis (%14C & !77‰). Likewise, compounds II and VI
were collected together as a second fraction (%14C & !84‰). The
abundance-weighted average %14C value for the surface GDGTs is
!82‰. The difference between the %14C value of surface DIC
(!71‰) and the GDGTs is less than the measurement error for
the GDGTs.

Five fractions of GDGTs were collected from the deep sample
(Figs. 1 and 4). Values of %14C for individual GDGTs in the deep
sample ranged from '127‰ to '60‰ (Table 1). When replicate
%14C measurements were available for the same compound, the
sample having a larger mass consistently has a more precise
measurement than the sample having smaller mass. Therefore, only
the values from the larger samples are used for the following
analysis and discussion. The abundance-weighted average %14C
value of the deep archaeal lipids was '77‰. This average was
calculated from 94% of total GDGTs from this depth, because
insufficient mass of sample was obtained from GDGTs V and VI
to measure accurate %14C values. Both GDGTs V and VI are
excluded from further discussion.

Discussion
The values of %14C for surface (21 m) archaeal lipids unambiguously
reflect production of biomass from DIC or from freshly produced
dissolved OC (DOC; solubilized from fresh POC and used by
microbes). In surface waters, it is not possible to distinguish
heterotrophy from autotrophy, because the %14C values of the DIC
and fresh organic substrates are identical. However, the data do
confirm a short residence time and an in situ biosynthetic source for
GDGTs obtained from the upper water column. The data also
confirm that the GDGTs present in surface waters cannot derive
from relict microbial populations or from free lipids entrained
during occasional deep mixing events. It is difficult to assess the
relative contributions of Group I and II marine archaea to the total
surface GDGTs. Because many Euryarchaeota produce diether
lipids instead of tetraether lipids, the surface GDGT samples
probably underrepresent the contribution of marine Group II

Table 1. Water temperature, values of !14C, sizes of samples,
and AMS facility sample numbers

Depth, m;
temp., °C Sample

%14C,*
‰

Total
error,

‰

Sample
size,
"g!C

Facility
sample
nos.†

21; 24.5–27.5 DIC 71 3 OS-46826
Eukaryotic sterols

C27 mixed sterols 56 9 43 115347
C29 mixed sterols 69 9 48 115348

Archaeal GDGTs
I, III, IV, and V 77 13 26 17027
II and VI 84 12 28 17029

670; 6 DIC '151 3 OS-46825
Archael GDGTs

I '68 65 5.4 16873
'110 11 30 17022

II '72 32 9.6 17023
'64 13 24 17026

III '60 54 6.1 16878
IV '127 41 7.6 16883

'64 32 9.8 17031
V n.a. n.a. n.a. n.a.
VI 98 257 2.8 16861

Italics symbolize samples excluded from the algebraic model. n.a., not
available.
*%14C values after correction for combustion blanks and sample processing
blanks as described in Supporting Text.

†AMS facility nos. all refer to University of California, Irvine, except for those
beginning with ‘‘OS,’’ which are for National Ocean Sciences Accelerator
Mass Spectrometry, and 115347–115348, which are from Lawrence Livermore
National Laboratory.

Fig. 1. HPLC!atmospheric pressure chem-
ical ionization-MS total ion current chro-
matograms of GDGTs separated from the
surface filter (21 m) (A) and deep filter (670
m) (B) and molecular structures of the
GDGT lipids. GDGT VI is a regioisomer of
GDGT II (45).

Ingalls et al. PNAS " April 25, 2006 " vol. 103 " no. 17 " 6443
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4.	  Indirect	  physiological	  measurement	  
b.	  emi[ed	  product	  isotopic	  signatures	  

McCalley	  et	  al	  submi"ed	  



5.	  Modeled	  linkages	  

Moira!	  



1)  Indirect	  molecular	  inference:	  
	  a.	  16S	  -‐>	  funcPonal	  guilds	  
	  b.	  gene	  ecology	  (of	  known	  funcPonal	  genes)	  
	  c.	  transcripPonal	  and	  translaPonal	  acPvity	  (of	  known	  funcPonal	  genes)	  

2) direct	  molecular	  inference:	  
	   	  a.	  SIP	  

3)	  	  	  direct	  physiological	  measurement:	  
	   	  a.	  culture	  based	  charactrizaPon	  
	   	  b.	  Ecolog	  plate	  substrate	  uPlizaPon	  
	   	  c.	  enzyme	  assays	  

4)  indirect	  physiologial	  measurement:	  
	   	  a.	  biomolecule	  isotopic	  signatures	  
	   	  b.	  emi"ed	  product	  isotopic	  signatures	  

5)	  	  	  modeled	  linkages	  	  -‐	  Moira	  Hough	  will	  tell	  us	  about	  this	  

A	  way	  I	  think	  about	  some	  of	  the	  methods	  
involved	  in	  connecPng	  them:	  


