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A pressing question

What is the fate of all that fossil fuel CO,? Atmosphere? Ocean?

Charles David Keeling.
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measurements of atmospheric CO, in a
sufficiently remote place (the south
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transients or local biases.
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What is the fate of all that fossil fuel CO,? Atmosphere? Ocean?
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Made the first high-accuracy
measurements of atmospheric CO, in a
sufficiently remote place (the south
pole) to be minimally influenced by

transients or local biases.

Arising level of CO.in the atmosphere
was first demonstrated in 1960 in
Antarctica, visible after only two years of
measurements. (Keeling, 1960)
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Questions about carbon uptake

Part IT. Where does all the carbon go?

1. How do we tell how much is going into
the land, and how much is going into
the ocean?

2. What causes the high interannual
variability in atm. CO2? (the wiggles?)
Part TIT. What about the future?

Reading: Latest update from IPCC (2013)




1. How much CO, is going into the land,
and how much is going into the ocean?

Methods: Atmospheric “Inverse modeling”
(a) combine global atmospheric CO2 data with
global model of atmospheric transport

— Identify where CO2 is added and removed to/from
atmosphere

— Gurney et al., 2002 - simple example

(b) Multi-tracer inversions

example: combine CO, and O,
(Ralph Keeling et al)

What is “inverse modeling”?

* Imagine a model that, given a pattern of
sources and sinks of CO2 on the earth’s
surface, predicts a resultant pattern of
concentrations in the atmosphere

* Run this model backward (i.e. “invert” the
model) to get the pattern of sources and
sinks from the atmospheric concentrations




Hypothetical examples:
#1: balanced carbon cycle, no net sources and sinks
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Hypothetical examples:
#2: fossil fuel emissions (current pattern): no net sources/sinks
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Hypothetical examples:

#2: fossil fuel emissions (current pattern): no net sources/sinks
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Global CO, observation network
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* Given a NH source (fossil fuel), we require a
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« NH terrestrial biosphere a significant sink
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Inverse model example (b): CO2 & 02

Partitioning terrestrial and oceanic carbon exchange:

a multiple tracer approach

A) Aerobic Biological CO, exchange is intimately
coupled with O, exchange: photosynthesis produces

O,, respiration consumes it

Recall: Aerobic Carbon cycle:
Photosynthesis/Resp.: H,O +(CO,) &> CH,O + O,

12



Inverse model example (b): CO2 & O2

Partitioning terrestrial and oceanic carbon exchange:
a multiple tracer approach

A) Aerobic Biological CO, exchange is intimately
coupled with O, exchange: photosynthesis produces
O,, respiration consumes it

Recall: Aerobic Carbon cycle:
Photosynthesis/Resp.: H,0 +(CO,) <> CH,O + O,

B) Ocean-atmosphere CO, exchange is physical
dissolution, so oceanic CO, uptake does not influence
atmospheric O,

C) Thus, the relationship between the CO, and O,
content of the atmosphere provides a fingerprint
of biological and oceanic CO, exchanges
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Human Perturbation of the Global Carbon Budget
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2. What causes the high interannual variability in
atm. CO2 grovvth rate? (the W|ggles’>) ’
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2. What causes the high interannual variability in
atm. CO2 growth rate? (the wiggles?)
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2. What causes the high interannual variability in
atm. CO2 growth rate? (the wiggles?)

Fossil fuel emissions

Accomulation rate m atmosphere
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2. What causes the high interannual variability in
atm. CO2 growth rate? (the wiggles?)

Fossil fuel emissions

Accumulation rate in
oceans and on land
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2. What causes the high interannual variability in
atm. CO2 growth rate? (the wiggles?)
Fossil fuel emissions
hAorumulation
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Consistent spike in atm.
growth rate during El Nifio
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GtCyr?

2. What causes the high interannual variability in
atm. CO2 growth rate? (the wiggles?)

Fossil fuel emissions
6"

Except
early 90s!
(why?)
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2. What causes the high interannual variability in
atm. CO2 growth rate? (the wiggles?)
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Part IIT.
How might the terrestrial carbon sink
(~15 Gt C/yr in 90s) change over the next century?

How might the terrestrial carbon sink
(~1.5 61 C/yr in 90s) change over the next century?

Coupled carbon cycle/general circulation model simulations
Hadley Ctr. (Cox et al., 2000)
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How might the terrestrial carbon sink
(~1.5 Gt C/yr in 90s) change over the next century?

Hadley Ctr. (Cox et al., 2000)

Coupled carbon cycle/general circulation model simulations
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How might the terrestrial carbon sink
(~1.5 61 C/yr in 90s) change over the next century?

Emissions Gt C yr!

Coupled carbon cycle/general circulation model simulations
Hadley Ctr. (Cox et al., 2000) versus IPSL (Dufresne, Friedlingstein, et al., '01)
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How might the terrestrial carbon sink

(~1.5 Gt C/yr in 90s) change over the next century?

Coupled carbon cycle/general circulation model simulations
Hadley Ctr. (Cox et al., 2000) versus IPSL (Dufresne, Friedlingstein, et al., '01)
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How might the terrestrial carbon sink
(~1.5 61 C/yr in 90s) change over the next century?

Coupled carbon cycle/general circulation model simulations
Hadley Ctr. (Cox et al., 2000) versus IPSL (Dufresne, Friedlingstein, et al., '01)
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Key factors driving model difference:

*High sensitivity of soil respiration (Qyo = 2) in Orange model
*Strong CO, fertilization effect in green model (IPSL)
*Drought-induced Dieoff of Amazon rainforest - savanna
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How might the terrestrial carbon sink
(~1.5 6t C/yr in 90s) change over the next century?

Coupled carbon cycle/general circulation model simulations
Now we have full Suite of models that show even wider variation than the first two

How might the terrestrial carbon sink
(~2 &t C/yr in 90s) change over the next century?

Dynamic Global Vegetation Models of terrestrial carbon
sink show very wide variation
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Friedlingstein et al., 2006 (as reported in Purves & Pacala, 2008)
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How might the terrestrial carbon sink
(~2 6t C/yr in 90s) change over the next century?

Dynamic Global Vegetation Models of terrestrial carbon
sink show very wide variation
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B S { o
DO A 10 { —HadCMaLC 4
T 5 1 Z
S 3 7 The scale of
= v | our ignorance
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S 3 i
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Year: 1850 1900 1950 2000 2050 2100
Friedlingstein et al., 2006 (as reported in Purves & Pacala, 2008)

Methane:
CH, in the carbon cycle
2. The CH, “keeling curve” and the
great methane slow-down puzzle
3. What is the future of CH,
emissions

—
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Simplified carbon cycle
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Methane Measurements
NOAA ESRL Carbon Cycle
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CH, (ppb)

Methane Measurements
NOAA ESRL Carbon Cycle

CH, (ppb yr™)
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Top: Global average atmospheric methane mixing ratios (blue line) determined using measurements from the
Carbon Cycle cooperative air sampling network. The red line represents the long-tenm trend. Bottom: Global
average growth rate for methane, Contact: Dr. Ed Dlugokencky, NOAA ESAL Carbon Cycle, Boulder, Colorado,
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Methane Measurements
MNOAA ESRHL Carbon Cycle
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average growth rate for methane, Contact: Dr. Ed Dlugokencky, NOAA ESAL Carbon Cycle, Boulder, Colorado,
(303) 4676228, od.dlugokencky@noaa.gov, hitp://www.esr.noaa.govigmd/coga/.
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Methane Measurements
n Lycle

NOAA ESRL
1750
0 The recent slow-down in the
2 1500 increase in atmospheric methane
T “mak[es] it impossible to predict
1] a
650 future concentrations based on past
> changes”
I -- Khalil & Rasmussen 1993
: “we have not been able to ascribe
5E atmospheric CH, increases and
o 10 1 decreases to specific processes. As of
= early 2000s, we have no predictive
La sk 4 capability.” -- Reeburgh, 2005
T oF 3
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&4 B5 66 B7 BB BY 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07

YEAR
Top: Global average atmospheric methane mixing ratios (blue line) determined using measurements from the
Carbon Cycle cooperative air sampling network._The red line represents the longetesm trend. Bottom: Global
average growth rate for methane, Contact: Dr. Ed Dlugokencky, NOAA ESAL Carbon Gycle, Boulder, Colorado,
(303) 4876228, ed dlugokencky(@noaa.gov, htip:/jwww.esr.noaa govigmed/ccgg!.
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Atmospheric Biological
1906 isolation of methane-oxidizing bacteria (Sohngen 1906)

1948 atmospheric methane detected
(Migeotte 1948)

1960s systematic research on taxonomy, physiology,
biochemistry of methanotrophs (mostly aquatic systems)
1978 Begin systematic measurement of global CH,
1981 First report of upward trend in atmospheric CH,
(Khalil & Rasmussen 1981)
1982 Survey of 17 ecosystem types (includ. forest, savanna, & alpine

meadow) concludes all are methane sources Ecosystem
production estimated 910 Tg (!!), atm. lifetime 3.3 years
(Sheppard et al. 1982) (faulty measuring method)

First report of net CH, consumption in soil (swamp)
(Harriss et al. 1982)

Mid 80s Ice core data reveal longer-term atm. Keller et al. (‘83) measure consistent consumption in forest soils,
atmospheric trends suggest soils may constitute ~ 1% of global sink

Data on reaction kinetics for known isolated methanotrophs
indicate that atm. concentrations insufficient to support growth
(Conrad 1984)

late 80s growing observation database of net methane consumption in soils
early 90s Methane growth rate reported to be declining Long-term methane emission measurements at Sallie’s
Fen

(Crill & Frolking, 1995)

1991 Reaction rate for CH, + OH is 25% lower,
lifetime is 25% higher (12 yr)
(Vaghjiani & Ravishankara 1991)

1999- Microbial genomics techniques (especially marine).
2006 Atmospheric Methane growth rate is ~zero Plants produce methane aerobically!? (Keppler et al.
2008)

26



THTTIETTE UT OSUITTIUIC NTOWICTUYT ADUUL STUUAT IVIEUTATTT

Atmospheric

1906
1948 atmospheric methane detected
(Migeotte 1948)

Biological

isolation of methane-oxidizing bacteria (Sohngen 1906)

1960s systematic research on taxonomy, physiology,
biochemistry of methanotrophs (mostly aquatic systems)
1978 Begin systematic measurement of global CH,

1981 First report of upward trend in atmospheric CH,

(Khalil & Rasmussen 1981)
1982

Mid 80s Ice core data reveal longer-term atm.
atmospheric trends

late 80s

early 90s Methane growth rate reported to decline

1991 Reaction rate for CH, + OH is 25% lower,
lifetime is 25% higher (12 yr)
(Vaghjiani & Ravishankara 1991)

Survey of 17 ecosystem types (includ. forest, savanna, & alpine
meadow) concludes all are methane sources Ecosystem
production estimated 910 Tg (!!), atm. lifetime 3.3 years
(Sheppard et al. 1982) (faulty measuring method)

First report of net CH, consumption in soil (swamp)
(Harriss et al. 1982)

Keller et al. (‘83) measure consistent consumption in forest soils,
suggest soils may constitute ~ 1% of global sink

Data on reaction kinetics for known isolated methanotrophs

indicate that atm. concentrations insufficient to support
growth (Conrad 1984)

growing observation database of net methane consumption in
soils

First Long-term methane emission measurements at Sallie’s Fen
(Crill & Frolking, 1995)

1999- Microbial genomics techniques (especially marine).

2006 Atmospheric Methane growth rate is ~zero Plants produce methane aerobically!? (Keppler et al.

Understanding the global methane cycle: an
outstanding challenge of biogeochemistry
Atmospheric methane
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NOAA, 2013
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Understanding the global methane cycle: an
outstanding challenge of biogeochemistry

Atmospheric methane
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“"We have nhot been able to
ascribe atmospheric CH,
increases and decreases to
specific processes. As of early
2000s, we have no predictive
capability.”

-- Reeburgh, 2005

* Slowdown of
atmospheric
growth rate
before 2005

¢ Resumed
increase after
2006

Kirschke et al. 2013, Nature Geoscience; Data from
NOAA, CSIRO, AGAGE, UCI atmospheric networks

| Sources

1980-1989

1990-1999

2000-2009

Top-Down Bottom-Up Top-Down Bottom-Up Top-Down Bottom-Up

SIS

Natural Sources 203 [150-267]| 355 [244-466] | 182 1167-197]| 336 [230-465] | 218 [179-273] | 347 [238-484]
Natural Wetlands | _ 167 [115231]| 225 [183-266]| 150 [144-160] | 206 [160-265] | 175[142-208] | 217 [L77-284]
Other Sources| 36 [35-36] 13061-200] | 32[23-37] 130 [61-200] 43[37-65] 130 [61-200]
Anthropogen. Sources | 348 (305-383]| 308 [292-323] 372 [290-453] | 313 [281-347] | 335 [273-409] | 331 [304-368]
Agriculture & Waste | 208 [187-220]| _ 185[172-107] | 239[180-301] | 187[177-196] | 209[180-241] | 200[187-224]
Rice 43 [41-47] 35 32:37] 36 [33-40]
Ruminants 85 81-90] 86 [82-91] 89 [87-94]
Landfills & Waste 55 [50-60] 65 [63-68] 75[67-90]
Biomass Buming | 46 [43-55] 34(31:37] 38 [26-45] 42(38-45] 30 [24-45] 35[32:39]
Fossil Fuels| 94 [75-108 39 [89-89 95 [84-107 84 [66-9 96[77-123 96 [85-105

490 [450-533]| 539 [411-671] | 525 (4015541 | 571 [521-621] | 518 [510-538] | 604 [483-738]

Global
Sum of Sources

551 [500-592] | 663 [536-789]

554 [529-506] | 649 [511-812]

548 [526-569]
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Total Chemical Loss
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Understanding the global methane cycle: an
outstanding challenge of biogeochemistry

Atmospheric methane
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"We have not been able to
ascribe atmospheric CH,
increases and decreases to
specific processes. As of early
2000s, we have no predictive
capability.”

-- Reeburgh, 2005

¢ Slowdown of
atmospheric
growth rate
before 2005

¢ Resumed
increase after
2006

Kirschke et al. 2013, Nature Geoscience; Data from
NOAA, CSIRO, AGAGE, UCI atmospheric networks
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Understanding the global methane cycle: an
outstanding challenge of biogeochemistry

Atmospheric methane An even bigger
: challenge for the
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R future:
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Vulnerability of Permafrost Carbon

Research Coordination Network (RCN)
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ﬁigh risk of permafrost thaw

Northern soils will release huge amounts of carbon in a warmer world, say

S o

T W

Grossemét al. (201?, Jg

Edward A. G. Schuur, Benjamin Abbott and the Permafrost Carbon Network.

‘Known Knowns’: ¢ ~20M km? « ~1500 Pg C « decomposable
‘Known Unknowns’: e thermokarst - landscape wetness ->
CO,:CH,?
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€Oy uptake by land
vegetation
0.3-06 PgCiyr

Arctic ocean shehes
and shelf slopes

Arctic ocean (16 CHy hydmtes 2-65 PgCH,

CHy hydrates
30-170 PgCH,4
RAux to sediment
~2 TgChyr

FAQ 6.2, Figure 1: A simplified graph of current major carbon pools and flows in the Arctic domain,
Including permafrost on land, continental shelves and ocean (adapted from McGuire et al. (2009)
and Tarnocai et al. (2009)). TgC = 10*2 gC, and PgC = 10% gC.

How big is the potential climate
feedback from permafrost methane?

Schuur and colleagues (2011): "We calculate that permafrost
thaw will release the same order of magnitude of carbon as
deforestation if current rates of deforestation continue. But
because these emissions include significant quantities

of methane, the overall effect on climate could be 2.5 times
larger.”

Perma-
frost

IPCC et al., 2013: “Until the year 2100, up to 250 PgC could be
released as CO2, and up to 5 Pg as CH4. Given methane’s stronger
greenhouse warming potential, that corresponds to a further 100
PgC of equivalent CO2 released until the year 2100. These amounts
are similar in magnitude to other biogeochemical feedbacks, for
example, the additional CO2 released by the global warming of
terrestrial soils. However, current models do not include the full
complexity of Arctic processes that occur when permafrost thaws,
such as the formation of lakes and ponds.”

Hydrates There is a large pool of hydrates: in the Arctic alone, the amount of CH4
stored as hydrates could be more than 10 times greater than the CH4
presently in the global atmosphere
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NEW FIGS FROM IPCC AR5
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