Protists (Eukarya)

Ch 29
26 Feb 2009
ECOL 182R UofA
K. E. Bonine

Life can be divided into 3 domains

- Prokaryotes = bacteria + archaea
- Prokaryote was ancestral and only form for billions of years

Where are microbes on tree of life?

- Protists are eukaryotes that are not animals, plants or fungi: paraphyletic group
- Yeast are unicellular fungi

Protists: important BASE of FOOD CHAIN

Very common in aquatic habitats
Multicellularity evolved multiple times in eukaryotes.

How are eukaryotes different?

What happened during the evolution of eukaryotes?

- flexible cell surface
- cytoskeleton
- nuclear membrane
- digestive vesicles (vacuoles)
- endosymbiotic acquisitions

Eukaryotes contain organelles that were once independent prokaryotes.

Endocytosis of a cyanobacterium led to the development of chloroplasts (photosynthesis).

Mitochondria formed through endocytosis, probably of a proteobacterium, enabling generation of ATP.
Endosymbiosis

- One organism lives inside another
- Eukaryotic cell took in (endocytosis) prokaryotic ancestors of mitochondria and chloroplasts
- Organelles have
 - own DNA
 - 2 membranes
 - one from eukaryotic ancestor
 - one from prokaryotic ancestor

Lots of endosymbiosis

Most Eukaryotes:
Sexual lifecycle with meiosis

- During meiosis, diploid cells produce haploids.
- Recombination of homologous chromosomes mixes up DNA.
- Two haploids fuse by fertilization to form a new diploid

- Mitosis simply copies eukaryotic DNA, without shuffling it or changing the chromosome number: asexual reproduction, produces clones
- Haploids and diploids can both replicate by mitosis

Diplontic life cycle

only diploid is multicellular
Haplontic life cycle

- Only haploid is multicellular

Alternation of generations

- Haploid and diploid have independent multicellular forms

SEX ≠ REPRODUCTION

Asexual:
- Via mitosis in eukaryotes
- Via fission in prokaryotes (always haploid)
- Offspring genetically identical

Sexual:
- Genetically different from parents and each other
- [meiosis (2N → N), then fusion of gametes]

But, males are expensive...

Why did sex evolve?

Combat disease and pathogens?

Introduce more variation for selection to act on?

Fight oxidative damage in copying fidelity?

See Rick Michod Lab (EEB, UA) for more...

Biology of protists

- Most are aquatic
- Most are unicellular, some are multicellular, a few are large
- Some are heterotrophs, some are autotrophs, and some switch
- More diverse than prokaryotes in morphology, less diverse in metabolism
- Use membrane vesicles for many things
- Most reproduce both sexually and asexually
- "Protozoan" and "algae" lump together many phylogenetically distant protist groups
- Some responsible for human suffering
Evolutionary history of protists

Diplomonads and Parabasalids
- Both unicellular, lost their mitochondria

Euglenozoans
- Have flagella
- 2 clades
 - Euglenoids
 - Kinetoplastids

Euglenoids
- Often photosynthetic, but very flexible about nutrition

Kinetoplastids
- Parasitic
- Trypanosomes cause sleeping sickness, leishmaniasis, Chagas' disease, and East Coast fever
- Single large mitochondrion with kinoplast housing multiple, circular DNA molecules: edits own RNA

Alveolates
- Unicellular
- Cavities called alveoli just below their plasma membranes
Dinoflagellates
- Important primary producers in the oceans
- (part of the **phytoplankton** = photosynthetic free-floating microscopic organisms)
- Many are endosymbionts (e.g., in corals)
- Some are parasites of other marine organisms
- Many are bioluminescent

Dinoflagellates cause “red tides”

When and why do dinoflagellates bioluminesce?
- It’s like a burglar alarm against predators.
- When a dinoflagellate is disturbed, it flashes.
- This attracts a secondary predator.
- The secondary predator is more likely to eat the larger burglar than the smaller dinoflagellate.
- Often the threat alone is enough to scare off the primary predator (“burglar”).
- Breaking waves, running hand through water, or stepping on sand also disturb dinoflagellates

Apicomplexans
- Apical complex = mass of organelles at apical end of spores
- All are parasites: apical complex organelles help spore invade host tissue
- Plasmodium are the cause of malaria
- Enters the human circulatory system by way of the Anopheles mosquito
- Extracellular parasite in the insect vector and an intracellular parasite in the human host

What part of the Plasmodium life cycle does chloroquine interfere with?
- *erythrocytic stage* (inside red blood cells)
- This treats the symptoms, but persistent liver infection can lead to relapses
Ciliates have complex and varied body forms with hairlike cilia. Almost all heterotrophic. Large ciliate from termite gut moves using thousands of synchronized flagella.

Paramecium uses cilia to generate current to carry prey to gullet. Paramecium uses cilia to generate current to carry prey to gullet.

Paramecium conjugation
- Genetic recombination called conjugation (~sex)
- Haploid micronuclei are exchanged
- Fuse to form a new diploid micronucleus
- Not reproductive; no new cells are created; reproduction is asexual by binary fission (SEX ≠ REPRODUCTION)

Stramenopiles
- 2 flagella, usually different lengths: long one has rows of tubular hairs
- Some are photosynthetic
Diatoms: best known for beauty & variety

- Found everywhere in marine environments, major photosynthetic producers (phytoplankton)
- Characteristic stramenopile flagella got lost
- Structure given by silicon-implanted cell walls, very strong
- Always symmetric (either radial or bilateral)
- Certain sedimentary rocks are almost entirely composed of diatom skeletons, called diatomaceous earth.
- Top part overlaps bottom like a Petri dish

Diatoms reproduce both sexually and asexually

Brown algae

Can be big (60m. giant kelp)

Brown from carotenoid fucoxanthin in chloroplasts

Brown algae have alternation of generations

Can be either...
- **Isomorphic**: gametophyte and sporophyte look similar
- **Heteromorphic**: they look different

Oomycetes (water mold)

- Secrete enzymes to break down dead things, absorb products
- "-mycete" because we used to think they were fungi, but they aren't
- Phytophthora infestans caused Irish potato famine
Red algae
- photosynthetic pigment phycoerythrin, but they aren't always red
- Used to make agar

Green stuff
- chlorophylls a and b